首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The expression of the pfemp3 gene and the corresponding PfEMP3 knob-associated protein in the pre-erythrocytic stages of Plasmodium falciparum was demonstrated by RT-PCR, Western blots, IFAT and IEM. The antigen was found on the surface of the sporozoite and in the cytoplasm of mature hepatic stage parasites. Immunological cross-reactivity was observed with sporozoites from the rodent malaria parasites Plasmodium yoelii yoelii and Plasmodium berghei and was exploited to assess a potential role of this protein at the pre-erythrocytic stages. Specific antibodies from immune individuals were found to inhibit P. yoelii yoelii and P. berghei sporozoite invasion of primary hepatocyte cultures. PfEMP3 should now be added to the small list of proteins expressed at the pre-erythrocytic stages of P. falciparum, and its vaccine potential now deserves to be investigated.  相似文献   

2.
3.
Cultured hepatic stages of Plasmodium falciparum and P. yoelii and with a monoclonal antibody recognizing a C-terminal fragment of the P. falciparum heat-shock-like protein (Pfhsp70) revealed that synthesis of this antigen first occurs during intrahepatic development of the parasite, at the two nuclei stage. Using a variety of techniques, including scanning electron microscopy, we observed that this antigenic determinant was expressed on the infected hepatocyte membrane. Its participation in antibody-dependent cell-mediated cytotoxicity was investigated. While no effect was obtained with peripheral blood cells, we found that 25% of the schizonts were specifically lysed when using spleen cells at a killer/target ratio of 30/1. More interestingly, with nonparenchymal liver cells, up to 50% of the hepatic parasites disappeared with a killer/target ratio of 10/1.  相似文献   

4.
5.
P Ray  N Sahoo  B Singh    F A Kironde 《Infection and immunity》1994,62(6):2354-2361
We demonstrated that antibodies in the serum of BALB/c mice convalescent from Plasmodium yoelii infection inhibit the in vitro growth of Plasmodium falciparum. Blood stage P. falciparum antigens that cross-react with the convalescent-phase mouse serum antibodies were identified and partially characterized. Convalescent-phase mouse serum immunoglobulin G (IgG) reacted with P. falciparum lysates at up to a 1:15,000 dilution of the immune sera and bound to P. falciparum-parasitized erythrocytes at up to a 1:5,000 dilution of the sera. The cross-reactive moieties of antigens in parasite lysates were resistant to oxidation by periodate but sensitive to trypsinization. About 15 polypeptides (M(r)s of 15,000 to 110,000) of P. falciparum blood stages were recognized by the convalescent-phase mouse anti-P. yoelii sera; many of these antigens were metabolically 35S labeled and specifically immunoprecipitated. Also, virtually all of the cross-reactive antigens were recognized by human malaria-immune sera. The anti-P. yoelii serum antibodies bound, with high affinity, to at least five of the cross-reactive antigens (M(r)s of 107,000, 84,000, 53,000, 36,000, and 30,000). By phase separation in Triton X-114, eight interspecies cross-reactive antigens (M(r)s of 84,000, 76,000, 51,000, 31,000, 29,000, 28,000, 23,000, and 22,000) were found to be integral membrane proteins. Convalescent-phase mouse serum IgG strongly inhibited the differentiation of P. falciparum from schizonts to rings; 75 micrograms of IgG per ml caused 80% inhibition of release of merozoites and their invasion into erythrocytes. On the other hand, the anti-P. yoelii serum antibodies also inhibited intracellular development of P. falciparum from rings to schizonts; 25 micrograms of IgG per ml caused 50% inhibition. Inhibition of P. falciparum growth by anti-P. yoelii serum IgG suggests that some of the interspecies cross-reactive antigens contain important conserved epitopes and induce protective antibodies against P. falciparum.  相似文献   

6.
We previously reported that low doses of interleukin-1 strongly inhibited in vitro development of the hepatic stages of Plasmodium falciparum and P. yoelii. Among several hypotheses, we considered the role of C-reactive protein (CRP), a major acute-phase reactant whose concentration increases markedly in infectious disorders. We demonstrated that human hepatocytes cultured in the presence of interleukin-1 released, as early as 30 min after stimulation, an increased amount of CRP. We then established that CRP bound to the P. falciparum and P. yoelii sporozoite surface membranes, probably via a phosphorylcholine binding site. Experiments in which CRP was added to rat hepatocyte monolayers during or after inoculation confirmed that the target of the CRP-mediated inhibition was at the very early phase of infection. These in vitro functional activities were confirmed in an in vivo model; rats with increased levels of CRP in serum following an injection of turpentine oil were found to be largely protected against an inoculation of P. yoelii sporozoites. The same results were observed in animals inoculated with sporozoites previously incubated in purified CRP or in sera of rats pretreated with turpentine oil. The latter effect was inhibited after incubation of serum from turpentine-injected rats with anti-CRP serum.  相似文献   

7.
The Plasmodium falciparum liver-stage antigen 3 (LSA3), a recently identified preerythrocytic antigen, induces protection against malaria in chimpanzees. Using antibodies from individuals with hyperimmunity to malaria affinity purified on recombinant or synthetic polypeptides of LSA3, we identified four non-cross-reactive B-cell epitopes in Plasmodium yoelii preerythrocytic stages. On sporozoites the P. yoelii protein detected has a molecular mass similar to that of LSA3. T-cell epitopes cross-reacting with P. yoelii were also demonstrated using peripheral blood lymphocytes from LSA3-immunized chimpanzees. In contrast, no cross-reactive epitopes were found in Plasmodium berghei. LSA3-specific human antibodies exerted up to 100% inhibition of in vitro invasion of P. yoelii sporozoites into mouse hepatocytes. This strong in vitro activity was reproduced in vivo by passive transfer of LSA3 antibodies. These results indicate that the homologous epitopes may be biologically functional and suggest that P. yoelii could be used as a model to assess the antisporozoite activity of anti-LSA3 antibodies.  相似文献   

8.
B Lucas  A Engels  D Camus    A Haque 《Infection and immunity》1993,61(11):4863-4869
In the current study, we investigated the presence of a cross-reactive antigen(s) in the erythrocyte stage from Plasmodium yoelii (265 BY strain) and Plasmodium falciparum through recognition by T cells primed in vivo with antigens from each of these parasites. BALB/c mice are naturally resistant to P. falciparum but are susceptible to P. yoelii infection. Mice that had recovered from P. yoelii primary infection became resistant to a second infection. A higher in vitro proliferative response to a soluble blood stage preparation of P. falciparum was observed in splenic cells from immune animals than in those from mice with a patent P. yoelii infection. The antigen-induced proliferative response was enhanced when animals were exposed to a secondary infection. Animals exposed to a challenge infection were treated with anti-CD4 or anti-CD8 monoclonal antibodies to deplete the corresponding subset of T cells. There was a marked diminution in P. falciparum antigen-induced proliferative response in the total splenic cell populations from CD8-depleted but not from CD4-depleted mice. In CD8-depleted and nondepleted animals, the antigen-induced proliferation in the total cell populations was markedly lower than in the T-cell-rich populations, indicating inhibitory activities of B cells and/or macrophages. There was no such difference in the stimulation between total and T-enriched cell populations from CD4-depleted animals. Flow cytometry analysis demonstrated the presence of an almost equal percentage of CD8+ (59.6%) and CD4+ (64%) T cells in the spleen preparations following in vivo depletion of CD4- and CD8-bearing T cells, respectively. When cultured with P. yoelii blood stage antigen, splenocytes from animals immunized with P. falciparum antigen displayed a significant proliferative response which was markedly diminished by treatment with anti-Thy-1.2 antibody plus complement. Animals immunized with P. falciparum antigen and then challenged with P. yoelii blood stage parasites displayed about a 50% lower level of parasitemia. These results demonstrated the existence of a cross-reactive antigen(s) between a murine and a human Plasmodium species, as determined from both in vivo and in vitro biological assays, and indicated the reactivity of mainly CD8+ T cells with this antigen.  相似文献   

9.
The detection and quantitation of blood stage parasitaemia is typically used as a surrogate endpoint for estimating the efficacy of vaccines targeted against the hepatic stage, as well as the erythrocytic stage, of the parasite. However, this does not provide an adequate means of evaluating the efficacy of vaccines, which may be only partially effective at the liver-stage. This is a particular concern for effective evaluation of immune enhancement strategies for candidate pre-erythrocytic stage vaccines. Here, we have developed and validated a method for detecting and quantitating liver stage parasites, using the TaqMan fluorescent real-time quantitative PCR system (PE Applied Biosystems). This method uses TaqMan primers designed to the Plasmodium yoelii 18S rRNA gene and rodent GAPDH to amplify products from infected mouse liver cDNA. The technique is highly reproducible as demonstrated with plasmid controls and capable of efficiently quantitating liver-stage parasite burden following a range of sporozoite challenge doses in strains of mice, which differ in their susceptibility to sporozoite infection. We have further demonstrated the capacity of this technique to evaluate the efficacy of a range of pre-erythrocytic stage vaccines. Our data establish this quantitative real-time PCR assay to be a fast and reproducible way of accurately assessing liver stage parasite burden and vaccine efficacy in rodent malaria models.  相似文献   

10.
The immune response of random-bred mice to infection with a relatively avirulent strain of Plasmodium yoelii was measured in terms of parasitemia, splenomegaly, immediate and delayed hypersensitivity to a P. yoelii antigen preparation, resistance to challenge with a virulent variant of P. yoelii, and nonspecific resistance to L. monocytogenes. Avirulent P. yoelii produced a self limiting infection which resolved in 21 days. Peak parasitemia and splenomegaly were observed at 14 days, and infected mice were resistant to challenge with virulent P. yoelii from 7 days through at least 126 days. Mice infected with avirulent P. yoelii developed humoral immunity as judged by immediate hypersensitivity reactions and the capacity of their serum to passively protect normal mice against virulent P. yoelii. At no time did mice infected with the avirulent P. yoelii display evidence of cell-mediated immunity, as expressed by delayed-type hypersensitivity and increased resistance to L. monocytogenes. In fact, at the height of avirulent P. yoelii infection there was decreased resistance to L. monocytogenes in both liver and spleen, and the macrophages of the undisturbed peritoneal cavity were similarly defective. It was concluded that the defense mechanism of mice against P. yoelii is mediated by humoral factors in the absence of demonstrable cell-mediated immunity.  相似文献   

11.
NKT cells are a population of innate-like lymphocytes that display effector functions and immunoregulatory properties. We characterized the NKT cell response induced in C57BL/6 mice during a primary infection with Plasmodium yoelii sporozoites. We observed a heterogeneous NKT cell response that differed between liver and spleen. Hepatic NKT cells found in infected livers consisted mainly of CD1d-dependent CD4+ and double-negative (DN) NKT cells, whereas CD1d-independent NKT cells exhibiting a TCR(high) CD4(high) phenotype were prominent among splenic NKT cells during the infection. Hepatic and splenic NKT cells isolated from infected mice were activated and secreted mainly gamma interferon and tumor necrosis factor alpha in response to stimulation. Finally, P. yoelii-activated hepatic DN NKT cells inhibited the parasite's liver stage in a CD1d-dependent manner in vitro. However, experiments using B6.CD1d-deficient mice showed that CD1d and CD1d-restricted NKT cells are not necessary to control the parasite's development in vivo during neither the preerythrocytic stage nor the erythrocytic stage. Thus, our results show that a primary P. yoelii infection induces a heterogeneous and organ-specific response of NKT cells and that CD1d-dependent NKT cells play a minor role in the control of the development of Plasmodium in vivo in our model.  相似文献   

12.
Immunization of BALB/c mice with radiation-attenuated Plasmodium yoelii sporozoites induces cytotoxic T lymphocytes (CTL) specific for an epitope located within the amino acid sequence 277-288 of the P. yoelii circumsporozoite (CS) protein. Several CD8+ CTL clones were derived from the spleen cells of sporozoite-immunized mice, all displaying an apparently identical epitope specificity. All the clones induced high levels of cytolysis in vitro upon exposure to peptide-incubated MHC-compatible target cells. The adoptive transfer of two of these clones conferred complete protection against sporozoite challenge to naive mice. This protection is species and stage specific. Using P. yoelii specific ribosomal RNA probes to monitor the in vivo effects of the CTL clones, we found that their target was the intrahepatocytic stage of the parasite. The protective clones completely inhibited the development of the liver stages of P. yoelii. Some CTL clones were only partially inhibitory in vivo, while others failed completely to alter liver stage development and to confer any detectable degree of protection. The elucidation of the effector mechanism of this CTL mediated protection against rodent malaria should facilitate the design of an effective malaria vaccine. From a broader perspective this model may provide further insight into the mechanism(s) of CTL mediated killing of intracellular non-viral pathogens in general.  相似文献   

13.
Mammalian macrophage migration inhibitory factor (MIF) is a multifaceted cytokine involved in both extracellular and intracellular functions. Malaria parasites express a MIF homologue that might modulate host immune responses against blood-stage parasites, but the potential importance of MIF against other life cycle stages remains unstudied. In this study, we characterized the MIF homologue of Plasmodium yoelii throughout the life cycle, with emphasis on preerythrocytic stages. P. yoelii MIF (Py-MIF) was expressed in blood-stage parasites and detected at low levels in mosquito salivary gland sporozoites. MIF expression was strong throughout liver-stage development and localized to the cytoplasm of the parasite, with no evidence of release into the host hepatocyte. To examine the importance of Py-MIF for liver-stage development, we generated a Py-mif knockout parasite (P. yoelii Δmif). P. yoelii Δmif parasites grew normally as asexual erythrocytic-stage parasites and showed normal infection of mosquitoes. In contrast, the P. yoelii Δmif strain was attenuated during the liver stage. Mice infected with P. yoelii Δmif sporozoites either did not develop blood-stage parasitemia or exhibited a delay in the onset of blood-stage patency. Furthermore, P. yoelii Δmif parasites exhibited growth retardation in vivo. Combined, the data indicate that Plasmodium MIF is important for liver-stage development of P. yoelii, during which it is likely to play an intrinsic role in parasite development rather than modulating host immune responses to infection.  相似文献   

14.
We describe a novel approach for identifying target antigens for preerythrocytic malaria vaccines. Our strategy is to rapidly test hundreds of DNA vaccines encoding exons from the Plasmodium yoelii yoelii genomic sequence. In this antigen identification method, we measure reduction in parasite burden in the liver after sporozoite challenge in mice. Orthologs of protective P. y. yoelii genes can then be identified in the genomic databases of Plasmodium falciparum and Plasmodium vivax and investigated as candidate antigens for a human vaccine. A pilot study to develop the antigen identification method approach used 192 P. y. yoelii exons from genes expressed during the sporozoite stage of the life cycle. A total of 182 (94%) exons were successfully cloned into a DNA immunization vector with the Gateway cloning technology. To assess immunization strategies, mice were vaccinated with 19 of the new DNA plasmids in addition to the well-characterized protective plasmid encoding P. y. yoelii circumsporozoite protein. Single plasmid immunization by gene gun identified a novel vaccine target antigen which decreased liver parasite burden by 95% and which has orthologs in P. vivax and P. knowlesi but not P. falciparum. Intramuscular injection of DNA plasmids produced a different pattern of protective responses from those seen with gene gun immunization. Intramuscular immunization with plasmid pools could reduce liver parasite burden in mice despite the fact that none of the plasmids was protective when given individually. We conclude that high-throughput cloning of exons into DNA vaccines and their screening is feasible and can rapidly identify new malaria vaccine candidate antigens.  相似文献   

15.
Failure of malaria vaccination in mice born to immune mothers.   总被引:6,自引:2,他引:4  
Female BALB/c mice were vaccinated against blood stage P. yoelii (17XL strain), infected 2 weeks later and after recovery mated to normal C57B1/6 males. Control matings were with normal BALB/c females. The (C57B1/6 x BALB/c)F1 progeny were vaccinated at 4, 6, 8 or 10 weeks of age and infected 2 weeks later with lethal P. yoelii. All control mice were fully protected, but in the offspring of immune mothers mortality was 100, 87, 50, and 0% respectively. Mice in which the protective effect of vaccination had been abolished showed greatly reduced specific IgG and delayed hypersensitivity (DH) responses to challenge with parasite antigen. Results indicate that this failure of vaccination is due to the transmission of maternal IgG to the offspring which acts to suppress both priming by the vaccine and the generation of specific T helper cells involved in IgG production, as measured by the response to TNP-P. yoelii.  相似文献   

16.
Severe hypoglycemia developed during nonlethal Plasmodium chabaudi and lethal P. yoelii blood stage malaria infection in mice, always in association with hyperinsulinemia. Supernatants of lethal P. yoelii incubated overnight induced hypoglycemia and hyperinsulinemia in normal mice. In murine malaria, hypoglycemia may be largely secondary to increased insulin secretion.  相似文献   

17.
Protective immunity against a lethal malaria challenge infection was passively transferred to naive recipient mice with spleen cells from donor mice bearing a lethal infection with the virulent YM strain of Plasmodium yoelii. Successful transfer of protection was contingent upon the elimination of residual, viable parasites from donor spleen cell suspensions prior to the infusion of cells. Passive transfer experiments failed to detect suppressor cells in the spleens of lethally infected mice because unfractionated spleen cells or T-cell-enriched spleen cells from mice infected with P. yoelii YM did not enhance parasitemias upon infusion into mice infected with cross-reactive nonvirulent P. yoelii 17X. We concluded that a form of protective immunity was generated during the course of virulent infection but that its expression was inconsequential because parasite growth apparently exceeded the capacity of the immune system to clear the infection.  相似文献   

18.
J S McBride  H S Micklem    J M Ure 《Immunology》1977,32(5):635-644
Acute Plasmodium yoelii yoelii and chronic Plasmodium berghei malaria infections of CBA mice were accompanied by a reduced capacity to give an antibody response to type III pneumococcal polysaccharide (SIII). The depression of response initiated by acute malaria persisted for several weeks after recovery from clinical infection. During chronic infection, and at the peak of acute parasitaemia, virtually no response to SIII was detected. A substance which crossreacted serologically with SIII was found in blood cells of infected mice. The results suggest that antigen-specific, as well as non-specific, factors may contribute to the depression of the response to this antigen.  相似文献   

19.
Differential display (DD) has been routinely used to identify genes whose expression pattern is altered by changes in the cellular environment and/or at different stages of development. Most reports utilizing DD contain conventional DD primers that have high guanine and cytosine content and would not be expected to be optimal for Plasmodium which has approximately 30-40% G+C. In an attempt to accommodate the high adenine and thymidine rich genome of Plasmodium yoelii, we utilized PCR primers containing 40, 50 and 60% G+C and modified the existing DD technique. Thus 40% G+C appeared to be the most suitable to amplify Plasmodium genome. Gene specific primers were generated from the sequences of selected DD bands amplified using the 40% G+C primers and were used to verify that the DD clones were of parasite origin by PCR and sequence alignment. Additional data on five of the selected DD clones, designated P2T1L5, P2T1L6, P2T6L11, P2T7L12 and P2T7L13, suggested that all are expressed during the P. yoelii liver stage infection. Interestingly, P2T1L5 is also expressed during the sporozoite stage of the life cycle and both P2T1L6 and P2T6L11 are present as blood stage antigens. The results of this study suggest that DD incorporating primers with low G+C content allows the identification of P. yoelii messages from infected mouse livers.  相似文献   

20.
Adherent spleen and liver cells from mice infected with Plasmodium yoelii 17X or P. chabaudi AS were tested for production of reactive oxygen intermediates to measure their state of activation. Phorbol myristate acetate (PMA) was used to trigger the respiratory burst and production of superoxide anions was measured by the reduction of nitroblue tetrazolium. Spleen cells from mice infected with P. chabaudi showed an early increase in oxidative activity on day 3, and when the oxidative capacity of the whole spleen was calculated, it was maximal on day 9, just as the mice began to recover. In mice infected with P. yoelii, spleen cells showed an early peak in activity on day 5, and then returned to normal, although the mice did not recover for a further 2-3 weeks. However the total oxidative capacity of the spleen remained high throughout the infection. Mice vaccinated against P. yoelii with a killed blood-stage vaccine showed increased activity on day 3 (spleen) and day 5 (liver), compared with infected control mice. Thus macrophages in these organs could, if given an appropriate trigger, release high levels of these potentially toxic molecules during infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号