首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
We have developed a novel vaccine against Shiga toxin (Stx)-producing Escherichia coli (STEC) infection using a recombinant Mycobacterium bovis BCG (rBCG) system. Two intraperitoneal vaccinations with rBCG expressing the Stx2 B subunit (Stx2B) resulted in an increase of protective serum IgG and mucosal IgA responses to Stx2B in BALB/c mice. When orally challenged with 103 CFU of STEC strain B2F1 (O91: H21), the immunized mice survived statistically significantly longer than the nonvaccinated mice. We suggest that intraperitoneal immunization with rBCG expressing Stx2B would be a potential vaccine strategy for STEC.  相似文献   

2.
Shiga toxins produced by enterohemorrhagic Escherichia coli (EHEC) include Shiga toxin 1 (Stx1) as well as Shiga toxin 2 (Stx2). Stx1 is cell associated, whereas Stx2 is localized to the culture supernatant. We have analyzed the secretion of Stx2 by generating histidine-tagged StxB (StxB-H). Although neither StxB1-H nor StxB2-H was secreted in StxB-H-overexpressed EHEC, StxB2-H-overexpressed EHEC showed inhibited Stx2 secretion. On the other hand, StxB1-H-overexpressed EHEC showed no alteration of Stx2 secretion. B-subunit chimeras of Stx1 and Stx2 were used to identify the specific residue of StxB2 that the Stx2 secretory system recognizes. Alteration of the serine 31 residue to an asparagine residue (S31N) in StxB2-H enabled the recovery of Stx2 secretion. On the other hand, alteration of the asparagine 32 residue to a serine residue (N32S) in StxB1-H caused the partial secretion of a point-mutated histidine-tagged B subunit in EHEC. Based on the evidence, it appeared possible that this residue might contain secretion-related information for Stx2 secretion. To investigate this hypothesis, we constructed an isogenic mutant EHEC (Stx1B subunit, N32S) strain and an isogenic mutant EHEC (Stx2B subunit, S31N) strain. Although the mutant Stx2 was cell associated in isogenic mutant EHEC, mutant Stx1 was not extracellular. However, when we used plasmids for the expression of the mutant holotoxins, the overexpressed mutant Stx1 was found in the supernatant fraction, and the overexpressed mutant Stx2 was found in the cell-associated fraction in mutant holotoxin gene-transformed EHEC. These results indicate that the serine 31 residue of the B subunit of Stx2 contains secretion-related information.  相似文献   

3.
目的:表达Stx2a'-LHRH重组毒素, 探讨其特异杀伤癌细胞的作用。方法:用PCR技术扩增带有NcoⅠ和EcoRⅠ酶切位点的Stx2a'-LHRHDNA基因, 克隆至pET-28a(+)质粒中, 转化大肠杆菌BL21(DE3), 挑取单菌落培养, 提取质粒、酶切, IPTG诱导、表达, 光镜下观察Stx2a'-LHRH重组毒素对Hep-2细胞的细胞毒作用。结果:经鉴定、测序, 获得重组质粒pET-SL, SDS-PAGE及凝胶薄层扫描分析, 在分子量约28?000处有明显的表达带, Stx2a'-LHRH重组毒素对Hep-2细胞有明显杀伤作用。结论:利用分子生物学技术成功构建了带有Stx2a'-LHRH重组毒素基因的质粒, 使其表达Stx2a'-LHRH重组毒素, 而且对Hep-2细胞有明显细胞毒作用, 为进一步研究导向药物奠定了基础。  相似文献   

4.
The Shiga toxins (Stx1 and Stx2), produced by Shigella dysenteriae type 1 and enterohemorrhagic Escherichia coli, consist of one A subunit and five B subunits. The Stx1 and Stx2 B subunits form a pentameric structure that binds to globotriaosylceramide (Gb3-Cer) receptors on eukaryotic cells and promotes endocytosis. The A subunit then inhibits protein biosynthesis, which triggers apoptosis in the affected cell. In addition to its Gb3-Cer binding activity, the data in the following report demonstrate that the Stx2 B pentamer induces apoptosis in Ramos Burkitt's lymphoma B cells independently of A subunit activity. Apoptosis was not observed in A subunit-free preparations of the Stx1 B pentamer which competitively inhibited Stx2 B pentamer-mediated apoptosis. The pancaspase inhibitor, Z-VAD-fmk, prevented apoptosis in Ramos cells exposed to the Stx2 B subunit, Stx1 or Stx2. Brefeldin A, an inhibitor of the Golgi transport system, also prevented Stx2 B subunit-mediated apoptosis. These observations suggest that the Stx2 B subunit must be internalized, via Gb3-Cer receptors, to induce Ramos cell apoptosis. Moreover, unlike the two holotoxins, Stx2 B subunit-mediated apoptosis does not involve inhibition of protein biosynthesis. This study provides further insight into the pathogenic potential of this family of potent bacterial exotoxins.  相似文献   

5.
The closely related Shiga toxins, Shiga toxin 1 (Stx1) and Shiga toxin 2 (Stx2), can bind to Gb3 receptors. However, Stx2-producing enterohemorrhagic Escherichia coli (EHEC) strains are more commonly associated with serious human disease (viz., hemolytic-uremic syndrome) than Stx1-producing strains. To clarify the relationship between properties and toxicity of these toxins, we constructed and analyzed a hybrid holotoxin composed of Stx2A and Stx1B, designated as Stx2A1B, and a B subunit chimeric holotoxin composed of Stx2A and Stx2B (III V), designated as Stx2A2B (III V). The affinity of Stx2A1B to Gb3 was lower than that of Stx1, higher than that of Stx2 and identical to that of Stx2A2B (III V). On the other hand, the 50% lethal dose (LD(50)) for mice of Stx2A1B was lower than that of Stx1, but higher than that of Stx2. These results suggested that pathogenicity in mice was inversely related to the receptor affinity of the holotoxins. However, LD(50) of Stx2A1B was not identical to that of Stx2A2B (III V). Gel filtration analysis indicated that Stx2A2B (III V) was relatively less stable than Stx2A1B. Moreover, cross-linking experiments demonstrated that the modes of cell surface binding of Stx2A2B (III V) and Stx2A1B were different. These results indicated that the receptor affinity, stability and binding mode of Shiga toxins might be important determinants for toxicity in mice.  相似文献   

6.
Shiga toxin-producing Escherichia coli (STEC) strains are responsible for causing hemolytic-uremic syndrome (HUS), and systemic administration of Shiga toxin (Stx)-specific human monoclonal antibodies (HuMAbs) is considered a promising approach for prevention or treatment of the disease in children. The goal of the present study was to investigate the ability of Stx2-specific HuMAbs to protect against infections with STEC strains that produce Stx2 variants. Dose-response studies on five HuMAbs, using the mouse toxicity model, revealed that only the three directed against the A subunit were protective against Stx2 variants, and 5C12 was the most effective among the three tested. Two HuMAbs directed against the B subunit, while highly effective against Stx2, were ineffective against Stx2 variants. In a streptomycin-treated mouse model, parenteral administration of 5C12 significantly protected mice up to 48 h after oral bacterial challenge. We conclude that 5C12, reactive against the Stx2 A subunit, is an excellent candidate for immunotherapy against HUS and that antibodies directed against the A subunit of Stx2 have broad-spectrum activity that includes Stx2 variants, compared with those directed against the B subunit.  相似文献   

7.
Shiga toxin type 1 (Stx1) belongs to the Shiga family of bipartite AB toxins that inactivate eukaryotic 60S ribosomes. The A subunit of Stxs are N-glycosidases that share structural and functional features in their catalytic center and in an internal hydrophobic region that shows strong transmembrane propensity. Both features are conserved in ricin and other ribosomal inactivating proteins. During eukaryotic cell intoxication, holotoxin likely moves retrograde from the Golgi apparatus to the endoplasmic reticulum. The hydrophobic region, spanning residues I224 through N241 in the Stx1 A subunit (Stx1A), was hypothesized to participate in toxin translocation across internal target cell membranes. The TMpred computer program was used to design a series of site-specific mutations in this hydrophobic region that disrupt transmembrane propensity to various degrees. Mutations were synthesized by PCR overlap extension and confirmed by DNA sequencing. Mutants StxAF226Y, A231D, G234E, and A231D-G234E and wild-type Stx1A were expressed in Escherichia coli SY327 and purified by dye-ligand affinity chromatography. All of the mutant toxins were similar to wild-type Stx1A in enzymatic activity, as determined by inhibition of cell-free protein synthesis, and in susceptibility to trypsin digestion. Purified mutant or wild-type Stx1A combined with Stx1B subunits in vitro to form a holotoxin, as determined by native polyacrylamide gel electrophoresis immunoblotting. StxA mutant A231D-G234E, predicted to abolish transmembrane propensity, was 225-fold less cytotoxic to cultured Vero cells than were the wild-type toxin and the other mutant toxins which retained some transmembrane potential. Furthermore, compared to wild-type Stx1A, A231D-G234E Stx1A was less able to interact with synthetic lipid vesicles, as determined by analysis of tryptophan fluorescence for each toxin in the presence of increasing concentrations of lipid membrane vesicles. These results provide evidence that this conserved internal hydrophobic motif contributes to Stx1 translocation in eukaryotic cells.  相似文献   

8.
Shigella flexneri vaccine strain (SFL124) given orally, evokes humoral immune response in human volunteers. Such a strain, expressing antigenic epitope of B subunit of Shiga toxin, would also provide immunity to the toxin produced by some species of Shigella. A synthetic oligonucleotide, specifying an epitope [13-26 amino acids (aa)] of the B subunit of Shiga toxin, was inserted into the lamB gene of Escherichia coli and expressed in the S. flexneri vaccine strain. The chimeric LamB protein functioned normally and the epitope was expressed at the surface of the bacteria. The animals immunized with the live bacteria, expressing the epitope or sonicated lysates, showed a humoral response that was specific to the peptide (13-26 aa) and to the whole B subunit molecule. The elicited antisera neutralized the toxin activity on HeLa cells up to 40%, while the purified IgG fractions from the sera gave 90% neutralization.  相似文献   

9.
Shiga toxin (Stx) types 1 and 2 are encoded within intact or defective temperate bacteriophages in Stx-producing Escherichia coli (STEC), and expression of these toxins is linked to bacteriophage induction. Among Stx2 variants, only stx(2e) from one human STEC isolate has been reported to be carried within a toxin-converting phage. In this study, we examined the O91:H21 STEC isolate B2F1, which carries two functional alleles for the potent activatable Stx2 variant toxin, Stx2d, for the presence of Stx2d-converting bacteriophages. We first constructed mutants of B2F1 that produced one or the other Stx2d toxin and found that the mutant that produced only Stx2d1 made less toxin than the Stx2d2-producing mutant. Consistent with that result, the Stx2d1-producing mutant was attenuated in a streptomycin-treated mouse model of STEC infection. When the mutants were treated with mitomycin C to promote bacteriophage induction, Vero cell cytotoxicity was elevated only in extracts of the Stx2d1-producing mutant. Additionally, when mice were treated with ciprofloxacin, an antibiotic that induces the O157:H7 Stx2-converting phage, the animals were more susceptible to the Stx2d1-producing mutant. Moreover, an stx(2d1)-containing lysogen was isolated from plaques on strain DH5alpha that had been exposed to lysates of the mutant that produced Stx2d1 only, and supernatants from that lysogen transformed with a plasmid encoding RecA were cytotoxic when the lysogen was induced with mitomycin C. Finally, electron-microscopic examination of extracts from the Stx2d1-producing mutant showed hexagonal particles that resemble the prototypic Stx2-converting phage 933W. Together these observations provide strong evidence that expression of Stx2d1 is bacteriophage associated. We conclude that despite the sequence similarity of the stx(2d1)- and stx(2d2)-flanking regions in B2F1, Stx2d1 expression is repressed within the context of its toxin-converting phage while Stx2d2 expression is independent of phage induction.  相似文献   

10.
Numerous strategies have been employed in an attempt to improve the immunogenicity and efficacy of nucleic acid vaccines. In the present study, the immunogenicity in the induction of humoral and cellular immune responses to HIV-1 DNA vaccine expressing a chimeric gene of gag and gp120 and the adjuvant effect of IFN-alpha on HIV-1 DNA vaccine were studied in a murine model. The DNA vaccine plasmid pVAX1-gag-gp120 and eukaryotic expression plasmid pVAX1-IFN were constructed by inserting the chimeric gene of gag and gp120 of HIV-1 and IFN-alpha into the downstream of CMV promoter of eukaryotic expression vector pVAX1, respectively. In vitro expression detected by RT-PCR and Western blotting showed that the genes of interest could be expressed in transfected HeLa cells. After BALB/c mice were immunized by three intramuscular inoculations of the HIV-1 DNA vaccine plasmids alone or in combination with IFN-alpha expression plasmids, the different levels of anti-HIV-1 humoral and cellular responses were measured comparable to the control groups immunized with pVAX1-IFN, parent plasmid pVAX1 or PBS. The percentage of CD3+CD4+ and CD3+CD8+ subgroups of spleen T lymphocytes and the specific cytotoxicity activities of splenic CTLs in the coinoculation group were significantly higher than those in the separate inoculation group, and an enhancement of antibody response was also observed in the coinoculation group compared with the separate inoculation group. Take together, coadministration of HIV-1 DNA vaccine plasmids and IFN-alpha expression plasmids can elicit stronger humoral and cellular immune responses in mice than HIV-1 DNA vaccine plasmids alone, and IFN-alpha can be an effective immunological adjuvant in DNA vaccination against HIV-1.  相似文献   

11.
Production of verocytotoxin or Shiga-like toxin (Stx), particularly Stx2, is the basis of hemolytic uremic syndrome, a frequently lethal outcome for subjects infected with Stx2-producing enterohemorrhagic Escherichia coli (EHEC) strains. The toxin is formed by a single A subunit, which promotes protein synthesis inhibition in eukaryotic cells, and five B subunits, which bind to globotriaosylceramide at the surface of host cells. Host enzymes cleave the A subunit into the A1 peptide, endowed with N-glycosidase activity to the 28S rRNA, and the A2 peptide, which confers stability to the B pentamer. We report the construction of a DNA vaccine (pStx2ΔAB) that expresses a nontoxic Stx2 mutated form consisting of the last 32 amino acids of the A2 sequence and the complete B subunit as two nonfused polypeptides. Immunization trials carried out with the DNA vaccine in BALB/c mice, alone or in combination with another DNA vaccine encoding granulocyte-macrophage colony-stimulating factor, resulted in systemic Stx-specific antibody responses targeting both A and B subunits of the native Stx2. Moreover, anti-Stx2 antibodies raised in mice immunized with pStx2ΔAB showed toxin neutralization activity in vitro and, more importantly, conferred partial protection to Stx2 challenge in vivo. The present vector represents the second DNA vaccine so far reported to induce protective immunity to Stx2 and may contribute, either alone or in combination with other procedures, to the development of prophylactic or therapeutic interventions aiming to ameliorate EHEC infection-associated sequelae.Shiga toxin (Stx)-producing enterohemorrhagic Escherichia coli (EHEC) strains are important food-borne pathogens representing the major etiological agents of hemorrhagic colitis and hemolytic uremic syndrome (HUS), a life-threatening disease characterized by hemolytic anemia, thrombocytopenia, and renal failure (19). The infection correlates with ingestion of contaminated meat or vegetables but is also transmitted by water or even person-to-person contact (8, 14, 44). Sporadic or massive outbreaks have been reported in several developed countries but, in Argentina, HUS is endemic and represents a serious public health problem with high morbidity and mortality rates (29, 40). Production of verocytotoxin or Shiga-like toxin (Stx) is the basis of EHEC pathogenesis (18, 20). The toxin is formed by a single A subunit, which possesses N-glycosidase activity to the 28S rRNA and promotes protein synthesis inhibition in eukaryotic cells, and five B subunits, which bind to globotriaosylceramide at the surface of host cells (9, 28). Although two major types (Stx1 and Stx2) and several subtypes have been described, Stx2 and Stx2c are the most frequently found toxins in severe HUS cases among EHEC-infected subjects (12, 41). The degree of antigenic cross-reactivity between Stx2 and Stx1 is low, and several authors have reported that the two toxins do not provide heterologous protection, particularly concerning the B subunits (45, 47). On the other hand, Stx2c and Stx2d variants are readily neutralized by antibodies against Stx2 (27).Despite the magnitude of the social and economic impacts caused by EHEC infections, no licensed vaccine or effective therapy is presently available for human use. So far, attempts to develop vaccine formulations against EHEC-associated sequelae have relied mainly on induction of serum anti-Stx antibody responses. Several approaches have been pursed to generate immunogenic anti-Stx vaccine formulations and include the use of live attenuated bacterial strains (2, 32), protein-conjugated polysaccharides (21), purified B subunit (33, 48), B-subunit-derived synthetic peptides (15), and mutated Stx1 and Stx2 nontoxic derivatives (5, 6, 13, 16, 37, 39, 42, 45).In a previous report we described anti-Stx2 DNA vaccines encoding either the B subunit or a fusion protein between the B subunit and the first N-terminal amino acid of the A1 subunit (8). The DNA vaccine encoding the hybrid protein elicited Stx-specific immune responses in mice and partial protection to Stx2 challenge (1, 33). Recent data have indicated that epitopes leading to generation of Stx-neutralizing antibodies are present on both the B as well as the A subunit (34, 45, 46). In addition, further evidence indicates that the A2 subunit contains some of the most immunogenic epitopes of the Stx2 toxin (4). Thus, in line with such evidence, we attempted the construction of a new DNA vaccine encoding the last 32 amino acids from the A2 subunit, in addition to the complete B subunit of Stx2, as separated polypeptides which could enhance the immunogenicity and protective effects of the vaccine formulation. In the present report, we describe the generation of a new DNA vaccine encoding both Stx2 A2 and B subunits as an approach to elicit protective antibody responses to Stx2. The results obtained demonstrate that immunization with this vaccine formulation results in systemic antibody responses to Stx2 A and B subunits and toxin neutralization activity both in vitro and in vivo.  相似文献   

12.
The 70-kilobase pYV plasmid of Yersinia enterocolitica encodes a set of proteins called Yops that are produced during infection. To use Y. enterocolitica as a live carrier to present the cholera toxin B (CT-B) subunit to the immune system, we constructed an operon fusion between ctxB and the yop51 gene. This operon fusion was either cloned on an RSF1010-derived plasmid or integrated into the pYV plasmid itself. In Y. enterocolitica, both constructions directed the synthesis of free CT-B only under conditions of Yops production, i.e., at 37 degrees C in a medium deprived of Ca2+. Bacteria containing both types of recombinant plasmids were given orally to mice. A serum antibody response against CT-B was detected in both cases. A secretory immunoglobulin A activity specific to CT-B was also observed in the intestinal secretions. According to immunoblot analysis, the serum antibody response was only directed against the polymeric form of the B subunit. The ctxB gene was also inserted in frame within yop51, giving a chimeric Yop51-CT-B protein that was secreted into the surrounding medium. In this case, however, no antibody response was observed after oral inoculation of mice. This lack of response probably results from the inability of the hybrid protein to assemble into the polymeric form of the B subunit.  相似文献   

13.
Shiga toxin (Stx)-producing Escherichia coli (STEC) strains cause food-borne outbreaks of hemorrhagic colitis and, less commonly, a serious kidney-damaging sequela called the hemolytic uremic syndrome (HUS). Stx, the primary virulence factor expressed by STEC, is an AB5 toxin with two antigenically distinct forms, Stx1a and Stx2a. Although both toxins have similar biological activities, Stx2a is more frequently produced by STEC strains that cause HUS than is Stx1a. Here we asked whether Stx1a and Stx2a act differently when delivered orally by gavage. We found that Stx2a had a 50% lethal dose (LD50) of 2.9 μg, but no morbidity occurred after oral intoxication with up to 157 μg of Stx1a. We also compared several biochemical and histological parameters in mice intoxicated orally versus intraperitoneally with Stx2a. We discovered that both intoxication routes caused similar increases in serum creatinine and blood urea nitrogen, indicative of kidney damage, as well as electrolyte imbalances and weight loss in the animals. Furthermore, kidney sections from Stx2a-intoxicated mice revealed multifocal, acute tubular necrosis (ATN). Of particular note, we detected Stx2a in kidney sections from orally intoxicated mice in the same region as the epithelial cell type in which ATN was detected. Lastly, we showed reduced renal damage, as determined by renal biomarkers and histopathology, and full protection of orally intoxicated mice with monoclonal antibody (MAb) 11E10 directed against the toxin A subunit; conversely, an irrelevant MAb had no therapeutic effect. Orally intoxicated mice could be rescued by MAb 11E10 6 h but not 24 h after Stx2a delivery.  相似文献   

14.
Shiga toxin (Stx) derivatives, such as the Stx1 B subunit (StxB1), which mediates toxin binding to the membrane, and mutant Stx1 (mStx1), which is a nontoxic doubly mutated Stx1 harboring amino acid substitutions in the A subunit, possess adjuvant activity via the activation of dendritic cells (DCs). Our results showed that StxB1 and mStx1, but not native Stx1 (nStx1), resulted in enhanced expression of CD86, CD40, and major histocompatibility complex (MHC) class II molecules and, to some extent, also enhanced the expression of CD80 on bone marrow-derived DCs. StxB1-treated DCs exhibited an increase in tumor necrosis factor alpha and interleukin-12 (IL-12) production, a stimulation of DO11.10 T-cell proliferation, and the production of both Th1 and Th2 cytokines, including gamma interferon (IFN-gamma), IL-4, IL-5, IL-6, and IL-10. When mice were given StxB1 subcutaneously, the levels of CD80, CD86, and CD40, as well as MHC class II expression by splenic DCs, were enhanced. The subcutaneous immunization of mice with ovalbumin (OVA) plus mStx1 or StxB1 induced high titers of OVA-specific immunoglobulin M (IgM), IgG1, and IgG2a in serum. OVA-specific CD4+ T cells isolated from mice immunized with OVA plus mStx1 or StxB1 produced IFN-gamma, IL-4, IL-5, IL-6, and IL-10, indicating that mStx1 and StxB1 elicit both Th1- and Th2-type responses. Importantly, mice immunized subcutaneously with tetanus toxoid plus mStx1 or StxB1 were protected from a lethal challenge with tetanus toxin. These results suggest that nontoxic Stx derivatives, including both StxB1 and mStx1, could be effective adjuvants for the induction of mixed Th-type CD4+ T-cell-mediated antigen-specific antibody responses via the activation of DCs.  相似文献   

15.
Enterohemorrhagic Escherichia coli (EHEC) causes hemorrhagic colitis in humans and, in a subgroup of infected subjects, a more serious condition called hemolytic-uremic syndrome (HUS). These conditions arise because EHEC produces two antigenically distinct forms of Shiga toxin (Stx), called Stx1 and Stx2. Despite this, the production of Stx2 by virtually all EHEC serotypes and the documented role this toxin plays in HUS make it an attractive vaccine candidate. Previously, we assessed the potential of a purified recombinant Stx2 B-subunit preparation to prevent Shigatoxemia in rabbits. This study revealed that effective immunization could be achieved only if endotoxin was included with the vaccine antigen. Since the presence of endotoxin would be unacceptable in a human vaccine, the object of the studies described herein was to investigate ways to safely augment, in mice, the immunogenicity of the recombinant Stx2 B subunit containing <1 endotoxin unit per ml. The study revealed that sera from mice immunized with such a preparation, conjugated to keyhole limpet hemocyanin and administered with the Ribi adjuvant system, displayed the highest Shiga toxin 2 B-subunit-specific immunoglobulin G1 (IgG1) and IgG2a enzyme-linked immunosorbent assay titers and cytotoxicity-neutralizing activities in Ramos B cells. As well, 100% of the mice vaccinated with this preparation were subsequently protected from a lethal dose of Stx2 holotoxin. These results support further evaluation of a Stx2 B-subunit-based human EHEC vaccine.  相似文献   

16.
In Vivo Transduction with Shiga Toxin 1-Encoding Phage   总被引:23,自引:5,他引:18       下载免费PDF全文
To facilitate the study of intestinal transmission of the Shiga toxin 1 (Stx1)-converting phage H-19B, Tn10d-bla mutagenesis of an Escherichia coli H-19B lysogen was undertaken. Two mutants containing insertions in the gene encoding the A subunit of Stx1 were isolated. The resultant ampicillin-resistant E. coli strains lysogenic for these phages produced infectious H-19B particles but not active toxin. These lysogens were capable of transducing an E. coli recipient strain in the murine gastrointestinal tract, thereby demonstrating that lysogens of Shiga toxin-converting phages give rise to infectious virions within the host gastrointestinal tract.  相似文献   

17.
Hemolytic-uremic syndrome (HUS) is defined as the triad of anemia, thrombocytopenia, and acute kidney injury. Enterohemorrhagic Shiga toxin (Stx)-producing Escherichia coli (EHEC), which causes a prodromal hemorrhagic enteritis, remains the most common etiology of the typical or epidemic form of HUS. Because no licensed vaccine or effective therapy is presently available for human use, we recently developed a novel immunogen based on the B subunit of Shiga toxin 2 (Stx2B) and the enzyme lumazine synthase from Brucella spp. (BLS) (BLS-Stx2B). The aim of this study was to analyze maternal immunization with BLS-Stx2B as a possible approach for transferring anti-Stx2 protection to the offspring. BALB/c female mice were immunized with BLS-Stx2B before mating. Both dams and pups presented comparable titers of anti-Stx2B antibodies in sera and fecal extracts. Moreover, pups were totally protected against a lethal dose of systemic Stx2 injection up to 2 to 3 months postpartum. In addition, pups were resistant to an oral challenge with an Stx2-producing EHEC strain at weaning and did not develop any symptomatology associated with Stx2 toxicity. Fostering experiments demonstrated that anti-Stx2B neutralizing IgG antibodies were transmitted through breast-feeding. Pups that survived the EHEC infection due to maternally transferred immunity prolonged an active and specific immune response that protected them against a subsequent challenge with intravenous Stx2. Our study shows that maternal immunization with BLS-Stx2B was very effective at promoting the transfer of specific antibodies, and suggests that preexposure of adult females to this immunogen could protect their offspring during the early phase of life.  相似文献   

18.
Immune responses against the protective antigen (PA) of Bacillus anthracis are known to confer immunity against anthrax. We evaluated the efficacy of genetic vaccination with plasmid vectors encoding PA, in protecting mice from a lethal challenge with B. anthracis STI spores. BALB/c and A/J mice were immunized via gene gun inoculation, using eukaryotic expression vectors with different cellular targeting signals for the encoded antigen. The vector pSecTag PA83, encoding the full-length PA protein, has a signal sequence for secretion of the expressed protein. The plasmids pCMV/ER PA83 and pCMV/ER PA63, encoding the full-length and the physiologically active form of PA, respectively, target and retain the expressed antigen in the endoplasmic reticulum of transfected cells. All three plasmids induced PA-specific humoral immune responses, predominantly IgG1 antibodies, in mice. Spleen cells collected from plasmid-vaccinated BALB/c mice produced PA-specific interleukin-4, interleukin-5, and interferon-gamma in vitro. Vaccination with either pSecTag PA83 or pCMV/ER PA83 showed significant protection of A/J mice against infection with B. anthracis STI spores.  相似文献   

19.
目的 研究含有登革病毒Ⅱ型NS1基因的重组质粒肌内注射小鼠后在其体内诱导的细胞和体液免疫。方法 用含有登革病毒NS1基因的真核表达质粒pCNX2 NS1于小鼠胫前肌注射并加强免疫 2次。然后定期处死 ,采集血液标本以及小鼠脾细胞 ,检测小鼠的体液和细胞免疫。结果 在末次免疫后 4周检测到小鼠抗NS1抗体 ,并且检测到小鼠CD4 、CD8 亚群的变化。结论 含有登革病毒NS1基因的真核表达质粒pCNX2-NS1免疫小鼠后 ,可以诱导小鼠产生针对NS1的稳定特异性体液、细胞免疫  相似文献   

20.
HPV16型E7C亚基因与共激活分子B7-1协同诱导E7特异性CTL研究   总被引:1,自引:0,他引:1  
目的利用去除E7的转化活性而保留其抗原性的E7C亚基因研制防治HPV16相关疾病的疫苗,并进一步探索利用B7-1研制更佳活化细胞免疫的加强疫苗。方法用PCR方法扩增获得E7C后,插入真核表达质粒获得pLNCE7C,体外真核细胞中证实其具有表达能力后,在C57BL/6小鼠后腿肌肉内直接进行裸DNA接种免疫,或与pLNCmB7-1联合免疫接种,用51Cr释放法体外分析经免疫鼠的细胞毒性T淋巴细胞活性。结果经免疫小鼠获得较好的E7特异性CTL活性;若E7C与小鼠B7-1的表达质粒联合接种,则活性明显得到加强。结论E7C可以用于HPV16DNA疫苗研制,B7-1具有推广应用价值  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号