首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
《Annals of oncology》2017,28(4):824-830
BackgroundRAS mutations have been shown to confer resistance to anti- epidermal growth factor receptor (EGFR) treatment. We analysed the results of the PETACC8 trial (cetuximab + FOLFOX vs FOLFOX) in full RAS and BRAF wildtype (WT) patients (pts) with resected stage III colon cancer.Patients and methodsExons 2, 3 and 4 of KRAS and NRAS, and BRAF exons 11 and 15, were sequenced using the Ampliseq colon–lung cancer panel version 2, in PETACC8 trial pts who consented to translational research. The impact of cetuximab on time to recurrence (TTR), disease-free survival (DFS) and overall survival (OS) was investigated in pts with tumours harbouring RAS and BRAF WT, and RAS mutations. The prognostic value of each individual mutation was also tested.ResultsAmong the 2559 pts analysed, 745 pts (29%) were known to have KRAS exon 2 mutations and 163 pts (6.4%) the BRAF V600E mutation. Of the remaining 1651 pts, 1054 were assessed by NGS, showing that a further 227 pts (21%) had KRAS exon 2, 3, 4 or NRAS exon 2, 3, 4 mutations, and that 46 pts (4.4%) had a newly diagnosed BRAF mutation. Cetuximab added to FOLFOX did not significantly improve TTR, DFS or OS in pts with RAS WT or RAS and BRAF WT tumours (HR 0.77–1.03, allP > 0.05). Cetuximab addition was not either significantly deleterious in RAS mutant pts or in pts with rare RAS or BRAF mutations. In the overall trial population, NRAS and KRAS codon 61 mutations were the only rare mutations with the same pejorative prognostic value as KRAS exon 2 or BRAF V600E mutations.ConclusionThough not significant, the clinically relevant 0.76 adjusted HR observed for DFS in favour of adding cetuximab to FOLFOX, in full RAS and BRAF WT stage III colon cancer pts, may justify a new randomized controlled trial testing EGFR inhibitors in this setting.Clinical trial numberThis is an ancillary study of the PETACC8 trial: EUDRACT 2005-003463-23.  相似文献   

2.
《Annals of oncology》2014,25(9):1756-1761
BackgroundTreatment with antiepidermal growth factor receptor (anti-EGFR) monoclonal antibodies has been restricted to metastatic colorectal cancer (mCRC) patients with RAS wild-type tumors. Next-generation sequencing (NGS) allows the assessment in a single analysis of a large number of gene alterations and might provide important predictive and prognostic information.Patients and methodsIn the CAPRI-GOIM trial, 340 KRAS exon 2 wild-type mCRC patients received first-line FOLFIRI plus cetuximab. Tumor samples (182/340, 53.5%) were assessed by NGS to search for mutations in 22 genes involved in colon cancer.ResultsObjective responses in the NGS cohort were observed in 104/182 patients [overall response rate (ORR) 57.1%; 95% confidence interval (95% CI) 52% to 66.4%] with a median progression-free survival (mPFS) of 9.8 (95% CI 8.7–11.5) months. NGS analysis was successfully completed in all 182 samples. One or more gene mutations (up to five) were detected in 124/182 (68.1%) tumors within 14/22 genes for a total of 206 mutations. KRAS exon 2 mutations were identified in 29/182 (15.9%) samples, defined as wild type by local laboratory assessment. Frequently mutated genes were: TP53 (39.6%), KRAS exons 3/4 (8.8%), NRAS exons 2/3 (7.1%), PIK3CA exons 9/20 (13.2%), BRAF (8.2%). FOLFIRI plus cetuximab treatment determined ORR of 62.0% (95% CI 55.5% to 74.6%) with mPFS of 11.1 (95% CI 9.2–12.8) months in patients with KRAS and NRAS wild-type tumors. Conversely, ORR was 46.6% (95% CI 39.9–57.5%) with mPFS of 8.9 (95% CI 7.4–9.6) months in patients with KRAS or NRAS mutations. Similarly, the subgroup of patients carrying KRAS, NRAS, BRAF, or PIK3CA mutations showed a worse outcome, although this might be due to a prognostic effect.ConclusionsThis study demonstrates that NGS analysis in mCRC is feasible, reveals high level of intra and intertumor heterogeneity, and identifies patients that might benefit of FOLFIRI plus cetuximab treatment.  相似文献   

3.
Earlier studies have shown frequent mutations in the BRAF and NRAS genes in cutaneous melanoma, but these alterations have not been examined in the rare category of melanoma from black Africans. Moreover, the frequency of epidermal growth factor receptor (EGFR) mutations in melanocytic tumors is not known. We therefore examined 165 benign and malignant melanocytic lesions (including 118 invasive melanomas and 18 metastases collected as consecutive cases from various time periods and from two different pathology departments; the 51 nodular melanomas were randomly selected from a larger, consecutive, population-based series of nodular melanomas) with respect to alterations in the EGFR, BRAF and NRAS genes. Mutations in EGFR (exons 18-21) were not detected. EGFR protein expression was observed in a subgroup of melanomas, but without associations with clinicopathologic phenotype or prognosis. Cytoplasmic EGFR expression was, however, significantly increased from benign nevi to melanomas. Mutations in BRAF and NRAS were detected in superficial melanoma (25 and 29%, respectively), nodular melanoma (29 and 28%, respectively) and lentigo maligna melanoma (15 and 16%, respectively). In a series of melanomas from black Africans (n=26), only two BRAF mutations (8%) were found, both being different from the common T1799A substitution. Moreover, melanomas from black Africans exhibited mutations in NRAS exon 1 only (12%), whereas NRAS exon 2 mutations were predominant in melanomas from Caucasians. Thus, the frequencies of BRAF and NRAS mutations were particularly low in melanomas from black Africans, supporting a different pathogenesis of these tumors.  相似文献   

4.
5.
We have previously shown that a subset of sinonasal intestinal-type adenocarcinomas (ITAC) shows activation of the epidermal growth factor-receptor (EGFR) pathway. In this study we examine the status of the EGFR, KRAS and BRAF genes in a series of sinonasal intestinal (ITAC) and non-intestinal type adenocarcinomas (non-ITAC). Eighteen ITACs and 12 non-ITACs were studied immunohistochemically for EGFR expression. Point mutations were analyzed for EGFR exons 19 and 21, KRAS exon 2 and BRAF exon 15 by direct sequencing. Non-ITACs showed significantly higher expression of EGFR (p?=?0.015). Mutation analysis revealed one ITAC with EGFR and one ITAC with KRAS mutation, while two non-ITACs presented mutation of BRAF. We conclude that a subset of sinonasal adenocarcinomas shows overexpression of EGFR, while activating mutations of the signaling cascade downstream of EGFR are rare, suggesting that these tumors could be good candidates for anti-EGFR therapies.  相似文献   

6.
《Annals of oncology》2015,26(8):1710-1714
BackgroundEvidence suggests that metastatic colorectal carcinoma (mCRC) has a high level of intratumor heterogeneity. We carried out a quantitative assessment of tumor heterogeneity for KRAS, NRAS, BRAF and PIK3CA mutations, in order to assess potential clinical implications.Patients and methodsTumor samples (n = 182) from the CAPRI-GOIM trial of first-line cetuximab + FOLFIRI in KRAS exon-2 wild-type mCRC patients were assessed by next-generation sequencing that allows quantitative assessment of mutant genes. Mutant allelic frequency was normalized for the neoplastic cell content and, assuming that somatic mutations usually affect one allele, the Heterogeneity Score (HS) was calculated by multiplying by 2 the frequency of mutant alleles in neoplastic cells. Therefore, HS virtually corresponds to the fraction of neoplastic cells carrying a specific mutation.ResultsThe KRAS HS ranged between 12 and 260 with mean value of 87.1 and median value of 84.4, suggesting that in most CRC, the majority of neoplastic cells carry mutant KRAS. Similar findings were observed for NRAS (HS range 35.5–146.7; mean 102.8; median 117.1). In contrast, in BRAF (HS range 17.1–120; mean 54.8; median 54.3) and PIK3CA (HS range 14.3–120; mean 59.5; median 47.3) mutant cases, only a fraction of neoplastic cells seem to carry the mutant allele. The response rate was 70% in KRAS mutant patients with an HS <33 (low KRAS; n = 10) and 45.7% in KRAS HS >33 patients (high KRAS; n = 35); median progression-free survival were 7.97 and 8.37 months, respectively. Low-KRAS tumors had a higher frequency of additional mutations in PIK3CA when compared with high-KRAS (6/10 versus 8/35).ConclusionsKRAS and NRAS mutations are usually present in the majority of neoplastic cells, whereas BRAF and PIK3CA mutations often affect a limited fraction of transformed cells. Resistance to cetuximab in low-KRAS patients might be driven by the complex mutational profile rather than KRAS mutation load.  相似文献   

7.
The impact of KRAS mutations on cetuximab sensitivity in epidermal growth factor receptor fluorescence in situ hybridisation-positive (EGFR FISH+) metastatic colorectal cancer patients (mCRC) has not been previously investigated. In the present study, we analysed KRAS, BRAF, PI3KCA, MET, and IGF1R in 85 mCRC treated with cetuximab-based therapy in whom EGFR status was known. KRAS mutations (52.5%) negatively affected response only in EGFR FISH+ patients. EGFR FISH+/KRAS mutated had a significantly lower response rate (P=0.04) than EGFR FISH+/KRAS wild type patients. Four EGFR FISH+ patients with KRAS mutations responded to cetuximab therapy. BRAF was mutated in 5.0% of patients and none responded to the therapy. PI3KCA mutations (17.7%) were not associated to cetuximab sensitivity. Patients overexpressing IGF1R (74.3%) had significantly longer survival than patients with low IGF1R expression (P=0.006), with no difference in response rate. IGF1R gene amplification was not detected, and only two (2.6%) patients, both responders, had MET gene amplification. In conclusion, KRAS mutations are associated with cetuximab failure in EGFR FISH+ mCRC, even if it does not preclude response. The rarity of MET and IGF1R gene amplification suggests a marginal role in primary resistance. The potential prognostic implication of IGF1R expression merits further evaluation.  相似文献   

8.
Anti-epidermal growth factor receptor therapy with the monoclonal antibodies cetuximab and panitumumab is the main targeted treatment to combine with standard chemotherapy for metastatic colorectal cancer. Many clinical studies have shown the benefit of the addition of these agents for patients without mutations in the EGFR pathway. Many biomarkers, including KRAS and NRAS mutations, BRAF mutations, PIK3CA mutations, PTEN loss, AREG and EREG expression, and HER-2 amplification have already been identified to select responders to anti-EGFR agents. Among these alterations KRAS and NRAS mutations are currently recognized as the best predictive factors for primary resistance. Liquid biopsy, which helps to isolate circulating tumor DNA, is an innovative method to study both primary and acquired resistance to anti-EGFR monoclonal antibodies. However, high-sensitivity techniques should be used to enable the identification of a wide set of gene mutations related to resistance.  相似文献   

9.
We examined the genome-wide expression profiles of 86 primary lung adenocarcinomas and compared them with the mutation status of the four key molecules (EGFR, ERBB2, KRAS and BRAF) in the EGFR/KRAS/BRAF pathway. Unsupervised classification revealed two subtypes (the bronchial type and the alveolar type) of lung adenocarcinoma. Mutually exclusive somatic mutations of the epidermal growth factor receptor (EGFR) gene (36/86, 41.8%), K-ras gene (11/86, 12.8%) and BRAF gene (1/86, 1.1%) were detected. KRAS mutations were observed significantly frequently in bronchial-type tumors, whereas the frequencies of EGFR mutations were similar in both the alveolar and bronchial types. Twenty-seven genes showed increased expression in EGFR-mutated tumors and these included molecules that function in the EGFR/KRAS/BRAF pathway (EGFR, AKT1 and BCR). In particular, expression of BCR, which is required for EGFR protein degradation, was induced by EGF stimulation, suggesting a negative feedback loop in lung cancer. A subgroup of the alveolar type tumors showed significantly better prognosis than other tumors. Integrated analysis of genetic and gene expression profiling aimed to delineate inherent oncogenic pathways in cancer will be valuable not only for the understanding of molecular pathogenesis, but also for discovering novel biomarkers and predicting clinical outcome.  相似文献   

10.
Pharmacogenetic testing can help identify patients with metastatic colorectal cancer more likely to respond to anti-EGFR therapy. We systematically reviewed the benefits and harms of EGFR-related pharmacogenetic testing of molecular targets downstream to KRAS in the treatment of metastatic colorectal cancer. We searched five electronic databases from January 2000 through November 2010, and conducted separate grey literature and conference abstracts searches. Two reviewers independently assessed all articles for relevance and quality. We identified 27 studies, primarily fair- to marginal-quality, small retrospective, and single-arm cohort studies with significant overlap in patient populations. We identified seven studies that studied BRAF in independent patient populations, one that studied NRAS, four that studied PIK3CA, eight that studied PTEN expression, and five that studied AKT expression. The best evidence for BRAF, NRAS, and PIK3CA comes from the largest retrospective study (n=649) of chemorefractory patients from seven European countries. In this study, BRAF mutation was present in 6.5% of KRAS wild-type tumors. Only 8.3% of persons with BRAF mutations, compared to 38% of persons without BRAF mutations (p=0.0012), responded to chemotherapy with cetuximab. Clinical sensitivity and the false positive fraction (1- specificity) were estimated at 9.8% (95% CI 6.3, 14.5) and 1.6% (95% CI 0.2, 5.6), respectively. BRAF mutation was also associated with worse median progression-free survival (absolute difference 18 weeks, p<0.0001), and overall survival (absolute difference 28 weeks, p<0.0001). In the only study comparing outcomes in persons who did (n=227) and did not (n=332) receive cetuximab with combination chemotherapy, those with BRAF mutation had worse survival outcomes regardless of whether or not they received cetuximab. Although NRAS and PIK3CA exon 20 mutations were also associated with worse outcomes compared to persons without these mutations, evidence is based on a small number of identified mutations. Evidence for protein expression of PTEN and AKT is more sparse and limited by variable methods for assessing protein expression. Low-quality evidence addressing clinical validity of pharmacogenetic testing in metastatic colorectal cancer patients suggests that BRAF mutations are associated with poorer treatment response and survival outcomes, although this association may be independent of treatment with EGFR inhibitors.  相似文献   

11.
Background: Mutations in RAS (KRAS, NRAS) and BRAF genes are the main biomarker predicting response to anti-EGFR monoclonal antibodies in targeted therapy in colorectal cancer (CRC). Objective: Our study aims to evaluate the frequencies of KRAS, NRAS and BRAF mutations and their possible associations with clinico-pathological features in CRC patients from Morocco. Methods: DNA was extracted from 80 FFPE samples using the QIAamp DNA FFPE-kit. RAS and BRAF mutations were assessed by pyrosequencing assays using Qiagen, KRAS Pyro®kit 24.V1, Ras-Extension Pyro®kit 24.V1 and BRAF Pyro®Kit 24.V1, respectively, and carried out in the PyroMark-Q24. Results: RAS mutations were identified in 57.5% (56.2% in KRAS, 8.8% in NRAS). In KRAS gene, exon 2 mutations accounted for 93.3% (68.9% in codon 12, 24.4% in codon 13). Within codon 12, G12D was the most prevalent mutation (37.7%), followed by G12C (13.4%), G12S (8.9%) and G12V (6.6%). Within codon 13, the most frequently observed mutation was G13D (22.3%). The mutation rates of exon 3 and 4 were 15.6% and 13.3%, respectively. In exon 3 codon 61, 2.3% patients were detected with two concurrent mutations (Q61R, Q61H), and 4.4% with three concurrent mutations (Q61R, Q61H, Q61L). In NRAS gene, the mutation rates of exon 2, 3 and 4 were 57.1%, 28.6%, and 14.3%, respectively. G13A and Q61H were the most common mutations, accounting for 42.9% and 28.5%, respectively. There were 13% patients with concurrent KRAS/NRAS mutation and 4.3% wt KRAS with NRAS mutations. No mutations were identified in BRAF gene. In both sexes, KRAS codon 12 mutations were associated with higher stage III/IV tumors. Moreover, Patients whose tumor is in the proximal colon (56.3%) are more likely to harbor KRAS mutations than those tumor located in rectum (25%). Conclusion: RAS mutations could be useful in future target anti-EGFR therapy and molecular CRC screening strategy in Morocco.  相似文献   

12.
The extracellular-regulated kinase (ERK) signaling pathway plays important roles in regulating the malignant potential of cancer cells in vitro. However, the effect of ERK signaling on the prognosis of human tumors is not clearly understood. The present study examined the expression of phosphorylated ERK1/2 (p-ERK1/2) as a hallmark of ERK activation, in relation to KRAS and BRAF mutations, in 63 endometrial cancer specimens with endometrioid-subtype, in order to clarify the prognostic value of p-ERK1/2 expression. Immmunohistochemical analysis revealed that 40 tumors (63%) expressed p-ERK1/2, with varying levels of expression. Total ERK1/2 expression was also evaluated in a subset of tumors; most cases expressed ERK1/2 constitutively but no correlation was observed with p-ERK expression, indicating that p-ERK1/2 staining was not due to ERK overexpression but to hyperactivation of ERK1/2. There was no statistically significant correlation between p-ERK1/2 expression and clinicopathological features, including patient age, International Federation of Gynecology and Obstetrics stage, pathological grade, myometrial invasion and lymph node metastasis. Sequencing analysis indicated that 23% of patients had a mutation in exon 1 of KRAS, whereas none of the patients had a mutation in exons 11 or 15 of BRAF, which are reportedly hot spots for mutation in many tumor types. There was no significant correlation between KRAS or BRAF status and p-ERK1/2 expression. Unexpectedly, patients with low p-ERK1/2 expression had significantly lower relapse-free survival (P = 0.041) and overall survival (P = 0.020). Multivariate Cox regression analysis indicated that p-ERK1/2 expression was an independent prognostic indicator for overall survival (P = 0.047). These findings suggest that ERK activation occurs in a KRAS- and BRAF-independent manner in endometrial cancer, and is associated with favorable prognosis.  相似文献   

13.
We have previously demonstrated the use of pyrosequencing to investigate NRAS [neuroblastoma RAS viral (v-ras) oncogene homolog] mutations in melanoma biopsies. Here, we expanded the analysis to include BRAF (V-raf murine sarcoma viral oncogene homolog B1), another member of the Ras-Raf-mitogen-activated protein kinase (MAPK) signalling pathway, and analysed a total of 294 melanoma tumours from 219 patients. Mutations in BRAF exons 11 and 15 were identified in 156 (53%) tumours and NRAS exon 2 mutations in 86 (29%) tumours. Overall, mutations in NRAS or BRAF were found in 242 of 294 tumours (82%) and were found to be mutually exclusive in all but two cases (0.7%). Multiple metastases were analysed in 57 of the cases and mutations were identical in all except three, indicating that BRAF and NRAS mutations occur before metastasis. Association with preexisting nevi was significantly higher in BRAF mutated tumours (P=0.014). In addition, tumours with BRAF mutations showed a significantly more frequent moderate to pronounced infiltration of lymphocytes (P=0.013). NRAS mutations were associated with a significantly higher Clark level of invasion (P=0.022) than BRAF mutations. Age at diagnosis was significantly higher in tumours with NRAS mutations than in those with BRAF mutations (P=0.019). NRAS and BRAF mutations, however, did not influence the overall survival from time of diagnosis (P=0.7). In conclusion, the separate genotypes were associated with differences in several key clinical and pathological parameters, indicating differences in the biology of melanoma tumours with different proto-oncogene mutations.  相似文献   

14.
BackgroundEpidermal growth factor receptor (EGFR) and its downstream factors KRAS and BRAF are mutated in several types of cancer, affecting the clinical response to EGFR inhibitors. Mutations in the EGFR kinase domain predict sensitivity to the tyrosine kinase inhibitors gefitinib and erlotinib in lung adenocarcinoma, while activating point mutations in KRAS and BRAF confer resistance to the anti-EGFR monoclonal antibody cetuximab in colorectal cancer. The development of new generation methods for systematic mutation screening of these genes will allow more appropriate therapeutic choices.PurposeDetection of KRAS mutation in Egyptian colorectal cancer (CRC) patients by the KRAS StripAssay.MethodsExamination of 20 colorectal cancer (CRC) patients is done to detect KRAS mutations by KRAS StripAssay. For the StripAssay, a mutant-enriched PCR was followed by hybridization to KRAS-specific probes bound to a nitrocellulose strip.ResultsAmong 20 patients, KRAS mutations were identified in 80% of patients by the KRAS StripAssay.ConclusionsOur preliminary results suggest that KRAS StripAssay is an alternative to protocols currently in use for KRAS mutation detection.  相似文献   

15.
Activating mutations of RAS gene families have been found in a variety of human malignancies, including lung cancer, suggesting their dominant role in tumorigenesis. However, several studies have shown a frequent loss of the wild-type KRAS allele in the tumors of murine models and an inhibition of oncogenic phenotype in tumor cell lines by transfection of wild-type RAS, indicating that wild-type RAS may have oncosuppressive properties. To determine whether loss of wild-type KRAS is involved in the development of human lung cancer, we investigated the mutations of KRAS, NRAS and BRAF in 154 primary non-small cell lung cancers (NSCLCs) as well as 10 NSCLC cell lines that have been shown to have KRAS mutations. We also determined the loss of heterozygosity status of KRAS alleles in these tumors. We detected point mutations of KRAS in 11 (7%) of 154 NSCLCs, with 10 cases at codon 12 and 1 at codon 61, but no mutations of NRAS or BRAF were found. Using the laser capture microdissection technique, we confirmed that 9 of the 11 tumors and 7 of the 10 NSCLC cell lines retained the wild-type KRAS allele. Among the cell lines with heterozygosity of mutant and wild-type KRAS, all of the cell lines tested for expression were shown to express more mutated KRAS than wild-type mRNA, with higher amounts of KRAS protein also being expressed compared to the cell lines with a loss of wild-type KRAS allele. In addition, among 148 specimens available for immunohistochemical analysis, 113 (76%) showed positive staining of KRAS, indicating that the vast majority of NSCLCs continue to express wild-type KRAS. Our findings indicate that the wild-type KRAS allele is occasionally lost in human lung cancer, and that the oncogenic activation of mutant KRAS is more frequently associated with an overexpression of the mutant allele than with a loss of the wild-type allele in human NSCLC development.  相似文献   

16.
BackgroundProgrammed cell death-ligand 1 (PD-L1) is expressed in a group of cancers that may be suitable targets for specific immunotherapy. This study investigated the expression of PD-L1 in surgically resected stage I adenocarcinomas and correlated this with known major driver mutations and clinical outcomes.Materials and methodsOne hundred and sixty-three patients with surgically resected stage I adenocarcinomas were explored. Paraffin-embedded tumour sections were stained with PD-L1 antibody. Tumours with moderate-to-strong membrane staining in ⩾5% of tumour cells were scored as positive for PD-L1 overexpression. The driver mutation epidermal growth factor receptor (EGFR), Kirsten rat sarcoma viral oncogene homolog (KRAS), and v-raf murine sarcoma viral oncogene homolog B (BRAF) were examined by direct sequencing and anaplastic lymphoma kinsase (ALK) by immunohistochemistry. The correlations of PD-L1 expression with major driver mutations and clinicopathologic parameters were analysed.ResultsThe overall frequency of PD-L1 overexpression was 39.9% (65/163). PD-L1 had higher positive results in tumours with higher grade differentiation and vascular invasion and PD-L1 expression was not associated with the expressions of EGFR, KRAS, BRAF and ALK. Multivariate analysis revealed that abnormal carcinoembryonic antigen (CEA) and higher grade of differentiation were risk factors for poor relapse-free survival (RFS) and PD-L1 expression correlated with better RFS. Advanced pathologic stage was the independent risk for poor overall survival (OS).ConclusionsThe PD-L1 expression can be used as a prognostic indicator predictive of RFS in patients with surgically resected stage I lung adenocarcinomas. There may be a possibility for immunotherapy targeting the PD-L1 pathway in patients with lung adenocarcinoma in the future.  相似文献   

17.
Colorectal cancer is a multi-step process characterized by a sequence of genetic alterations in cell growth regulatory genes, such as the adenomatous polyposis coli, KRAS, p53 and DCC genes. In the present study mutation analysis was performed with SSCA/direct sequencing of the hot-spot regions in exons 11 and 15 for the BRAF gene and exons 1-2 for the KRAS gene in 130 primary colorectal cancer tumors and correlated with clinico-pathological and mutational data. We also performed mutation analysis of the corresponding conserved regions in the ARAF and RAF-1 genes. Mutations in the BRAF and KRAS genes were found in 11.5 and 40% of the tumors, respectively. One germline exonic and nine germline intronic genetic variants were found in the ARAF and RAF-1 genes. All of the BRAF mutations were located in the kinase domain of the conserved region 3 in exon 15 of the BRAF gene. One novel somatic mutation was also identified in the BRAF gene. The majority of the BRAF mutations were found in colon compared with rectal tumors (P = 0.014). In agreement with others, a statistically significant correlation between BRAF mutations and microsatellite instability could be found. A negative correlation was also evident between mutations in the BRAF and KRAS genes, which supports earlier studies where somatic mutations in these genes are mutually exclusive. Collectively, our results provide support for the idea that activation of the MAP kinase pathway, especially via BRAF and KRAS mutations, is of critical importance for the development of colorectal cancer.  相似文献   

18.
Although anti‐EGFR therapy has established efficacy in metastatic colorectal cancer, only 10‐20% of unselected patients respond. This is partly due to KRAS and BRAF mutations, which are currently assessed in the primary tumor. To improve patient selection, assessing mutation status in circulating tumor cells (CTCs), which possibly better represent metastases than the primary tumor, could be advantageous. We investigated the feasibility of KRAS and BRAF mutation detection in colorectal CTCs by comparing three sensitive methods and compared mutation status in matching primary tumor, liver metastasis and CTCs. CTCs were isolated from blood drawn from 49 patients before liver resection using CellSearch?. DNA and RNA was isolated from primary tumors, metastases and CTCs. Mutations were assessed by co‐amplification at lower denaturation temperature‐PCR (Transgenomic?), real‐time PCR (EntroGen?) and nested Allele‐Specific Blocker (ASB‐)PCR and confirmed by Sanger sequencing. In 43 of the 49 patients, tissue RNA and DNA was of sufficient quantity and quality. In these 43 patients, discordance between primary and metastatic tumor was 23% for KRAS and 7% for BRAF mutations. RNA and DNA from CTCs was available from 42 of the 43 patients, in which ASB‐PCR was able to detect the most mutations. Inconclusive results in patients with low CTC counts limited the interpretation of discrepancies between tissue and CTCs. Determination of KRAS and BRAF mutations in CTCs is challenging but feasible. Of the tested methods, nested ASB‐PCR, enabling detection of KRAS and BRAF mutations in patients with as little as two CTCs, seems to be superior.  相似文献   

19.
《Annals of oncology》2013,24(12):3061-3065
BackgroundCurrent data suggest that chemotherapy combinations may be superior to single agents in biliary tract cancer. The epidermal growth factor receptor (EGFR) pathway appears to be associated with tumor stage, prognosis and response to therapy. This trial was designed to evaluate the tolerability and efficacy of the combination of panitumumab, a monoclonal anti-EGFR antibody, with gemcitabine and irinotecan.Patients and methodsPatients with advanced (unresectable or metastatic) cholangiocarcinoma, ECOG PS 0–2, and adequate organ function were treated with panitumumab (9 mg/kg) on day 1, and gemcitabine (1000 mg/m2) and irinotecan (100 mg/m2) on days 1 and 8 of a 21-day cycle. The primary objective was to evaluate the 5-month progression-free survival (PFS). Secondary objectives included overall response rate (ORR) and overall survival (OS). Mutational analyses of EGFR, KRAS and BRAF were carried out when feasible.ResultsThirty-five patients received a median of 7 (0–30) cycles. The most common grade 3/4 toxic effects were neutropenia (10 patients, 29%), thrombocytopenia (10 patients, 29%), skin rash (13 patients, 37%) and dehydration (9 patients, 26%). Two patients had CR, 9 had partial response (PR), and 15 had SD for a disease-control rate of 74% (by RECIST) in 28 assessable patients. Two patients went on to have surgical resection. The 5-month PFS was 69%. The median PFS was 9.7 months and the median OS was 12.9 months. In 17 testable samples, no EGFR or BRAF mutations were identified; there were 7 KRAS mutations, with no difference in OS by KRAS status.ConclusionsThis study showed encouraging efficacy of this regimen with good tolerability. Further study in this area is warranted.Clinical Trials Number: The trial was registered with the National Cancer Institute (www.clinicaltrials.gov identifier NCT00948935).  相似文献   

20.
PURPOSE: Recently, it was reported that BRAF mutations are frequent in melanoma. Previously, we analyzed a large series of paired primary and metastatic melanomas for NRAS codon 61 mutations and showed that they arise early and are preserved during tumor progression. Here, we have screened the same tumor samples for BRAF mutations. EXPERIMENTAL DESIGN: Primary melanomas (n = 71) and corresponding metastases (n = 88) from 71 patients were screened for BRAF exon 11 and exon 15 mutations using single-strand conformational polymorphism and nucleotide sequence analysis RESULTS: BRAF mutations were found in 42 of 71 patients (59%). Thirty-seven patients had mutations that lead to a Val599Glu change, whereas mutations resulting in Gly468Ser, Val599Arg, Val599Lys, and Lys600Glu changes were detected in one patient each. Furthermore, one patient had a 6-bp insertion between codons 598 and 599, encoding two threonine residues. In most cases, paired primary and metastatic lesions had the same BRAF genotype (i.e., mutations present in the primary tumors were preserved in the corresponding metastases, and mutations did not arise at the metastatic stage if they were not present in the primary lesion). Using laser-capture microdissection, BRAF mutations were found in the radial growth phase of the primary lesions. BRAF mutations occurred exclusively in tumors that were wild type for NRAS, and in total, 89% of the patients analyzed (63 of 71) had mutations in either of these two genes. CONCLUSIONS: The Ras-Raf-mitogen-activated protein kinase/extracellular signal-regulated kinase-extracellular signal-regulated kinase signaling pathway is activated in the vast majority of melanomas. Activation occurs through either NRAS or BRAF mutations, both of which arise early during melanoma pathogenesis and are preserved throughout tumor progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号