首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to investigate the effect of aerobic exercise training on activities and mRNA levels of catalase (CAT), glutathione peroxidase (GPX), Cu,Zn- and Mn-superoxide dismutases (SOD), TBARS content, and xanthine oxidase (XO) activity, in soleus muscle from young and aged rats. The antioxidant enzyme activities and mRNA levels were markedly increased in soleus muscle with aging. TBARS content of soleus muscle from the aged group was 8.3-fold higher as compared with that of young rats. In young rats, exercise training induced an increase of all antioxidant enzyme activities, except for Cu,Zn-SOD. XO also did not change. The TBARS content was also increased (2.9-fold) due to exercise training in soleus muscle from young rats. In aged rats, the activities of CAT, GPX and Cu,Zn-SOD in the soleus muscle did not change with the exercise training, whereas the activities of Mn-SOD (40%) and XO (27%) were decreased. The mRNA levels of Mn-SOD and CAT were decreased by 42% and 24%, respectively, in the trained group. Exercise training induced a significant decrease of TBARS content (81%) in the soleus muscle from aged rats. These findings support the proposition that exercise training presents an antioxidant stress effect on skeletal muscle from both young and aged rats.  相似文献   

2.
The effects were examined of 6-month intermittent hypobaric (4000 m) exposure on the antioxidant enzyme systems in soleus and tibialis muscles of rats. At the end of the 6-month experimental exposure, the six rats in both the exposed group and the control group were sacrificed. Immunoreactive mitochondrial superoxide dismutase (Mn-SOD) contents were measured as well as the activities of antioxidant enzymes [Mn-SOD, cytosolic SOD (Cu,Zn-SOD), catalase (CAT), and glutathione peroxidase (GPX)]. Thiobarbituric acid-reactive substances (TBARS) were also determined as an indicator of lipid peroxidation. The high altitude exposure resulted in a marked increase in TBARS content in soleus muscle, suggesting increased levels of oxygen free radicals. Conversely, significant decreases in both Mn-SOD content and activity in solens muscle were oted affer exposure. Such trends were not noticed in tibialis muscle. On the other hand, no significant changes in Cu,Zn-SOD, CAT, or GPX were observed in either muscle. These results suggested that the increases in lipid peroxidation were most probably a result of decreased Mn-SOD function which was more depressed in oxidative than in glycolytic muscle.  相似文献   

3.
The aim of our study was to investigate the effect of a single high intensity session of muscle contractions on the activity and expression of citrate synthase (CS) and of the following major antioxidant enzymes: Mn-superoxide dismutase (Mn-SOD), Cu,Zn-superoxide dismutase (Cu,Zn-SOD), catalase (CAT), and glutathione peroxidase (GPX). To accomplish this, soleus muscles of male Wistar rats were subjected to contractions using a intense electrical stimulation (ES) protocol. Soleus muscles were isolated either immediately or 1 h after the contractions and utilized for enzyme activity determination, and for analysis of gene expression by quantitative PCR. A significant increase in maximal activity (63%) and expression (80%) of CS was observed in stimulated soleus muscles, isolated 1 h after ES as compared to controls. However, this effect was not observed in muscles isolated immediately after ES. By using macroarray and Real Time RT-PCR analysis, an increase in expression of Mn-SOD, Cu,Zn-SOD, CAT, and GPX was also found. Interestingly, of these enzymes, only CAT activity was significantly increased (44%) 1 h after ES in soleus muscle. These results indicate that acute ES up-regulates activity and expression of CS and CAT in soleus muscles. This increase in expression of CAT may play an important role in counteracting the potential deleterious effects of elevated oxidative stress induced by a high oxidative demand in skeletal muscles subjected to exercise training.  相似文献   

4.
We examined whether oxidative stress-induced muscle damage occurs during weight-lifting exercise using the rat model. Male Wistar rats were subjected to a single exhaustive session of weight-lifting exercise, and dynamics of blood volume and hemoglobin levels in the exercising muscle were monitored by near-infrared spectroscopy. Total muscle damage was evaluated by the efflux of serum creatine kinase (CK) and uptake of [3H]thymidine. The production of reactive oxygen species (ROS) in the muscle was estimated by serial changes in total superoxide dismutase (SOD), glutathione peroxidase (GPX) and catalase (CAT) activities (established indirect markers). Immunohistochemical detection of GPX was also performed. A relatively anoxic state occurred repeatedly after every exercise set in exercising muscle following rapid blood reperfusion and was similar to an ischemia–reperfusion state. Serum CK and mitotic activity in the muscle consistently increased, and damaged muscle fibers that reacted positively to anti-GPX antibody were also observed after exercise. Serial changes in total SOD, GPX, and CAT activities were biphasic and exhibited peaks immediately and 24–72 h after exercise. The first increase was caused by a repeated ischemia–reperfusion-like state following weight-lifting exercise, and the second was dependent on the accumulation of infiltrated phagocytic cells at the damaged portions. These results suggest that ROS-induced muscle fiber damage occurred as a consequence of weight-lifting exercise.  相似文献   

5.
The lung could be the target organ to cellular damage, since it is directly exposed to high concentrations of oxygen. Acute exercise and age would be an added challenge to the lung, and therefore, we investigated alterations of major lung antioxidant enzymes (manganese-superoxide dismutase, Mn-SOD; copper-zinc-SOD, Cu-Zn-SOD; glutathione peroxidase, GPX; catalase, CAT) activities and mRNA expressions in young (4 months old) and old (26 months old) male Wistar rats with exercise. Thioredoxin reductase (TrxR) activity was also investigated. Mn-SOD and Cu-Zn-SOD increased with age, but age did not affect GPX, CAT, or TrxR activity. Acute exercise in young animals increased the activities of Mn-SOD, Cu-Zn-SOD, and CAT. In contrast, only Mn-SOD increased significantly in the old animals. The mRNA expressions of Mn-SOD, Cu-Zn-SOD and GPX were not altered with age, while CAT mRNA expression decreased with age. Acute exercise had no significant effect on any of the antioxidant enzyme mRNA expression. Moreover, reactive carbonyl derivative increased with age, but no significant changes were detected after acute exercise in either group. In summary, antioxidant enzymes responsible for the removal of hydrogen peroxide were unable to increase their enzyme activities in the old animals with exercise.  相似文献   

6.
In skeletal muscle the activity of the enzymatic antioxidants superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT) is regulated in response to generation of reactive oxygen species (ROS). Increased activity of these enzymes is observed after repeated bouts of aerobic exercise, a potent stimulus for intracellular ROS production. Hyperbaric oxygen (HBO) inhalation also stimulates intracellular ROS production although the effects of HBO on skeletal muscle SOD, GPx and CAT activity have not been studied. We tested the hypothesis that SOD, GPx and CAT activity is modulated in skeletal muscles in response to acute and repeated HBO administration. In adult male rats acute HBO inhalation (60 min at 3 atmospheres absolute) reduced catalase activity by approximately 51% in slow-twitch soleus muscles. Additionally, repeated HBO inhalation (twice daily for 28 days) increased Mn2+-superoxide dismutase activity by approximately 241% in fast-twitch extensor digitorum longus muscles. We conclude that both acute and repeated HBO inhalation can alter enzymatic antioxidant activity in skeletal muscles. Electronic Publication  相似文献   

7.
Diaphragmatic antioxidant enzymes are upregulated following acute and long-term treadmill exercise, but the effect of lifelong voluntary exercise (E) on diaphragmatic antioxidants is unknown. Therefore, 10-week old Fisher 344 rats were assigned to either: (a) sedentary ad libitum (AL) fed (24AL; n = 6); (b) E + 8% caloric restriction (24ECR; n = 9); or (c) sedentary + 8% caloric restriction (24CR; n = 9) groups. Diaphragms were harvested from animals at 24 months of age. Heme oxygenase-1 (HO-1) mRNA in addition to catalase (CAT), glutathione peroxidase (GPX), copper-zinc superoxide dismutase (Cu-ZnSOD) and manganese superoxide dismutase (MnSOD) mRNA and protein levels were measured. Reduced glutathione (GSH) and citrate synthase (CS) activity were measured to assess antioxidant status and oxidative capacity, respectively. The 24CR group demonstrated increased GPX, HO-1, MnSOD, and CAT mRNA compared to 24AL and 24ECR. Interestingly, the increased mRNA in 24CR animals did not result in elevated protein levels. No group differences in Cu-ZnSOD mRNA, CS activity, or GSH were observed, although GSH was 30% greater in 24CR animals (p = 0.085). In summary, although CR elevated the mRNA of key antioxidant enzymes in the diaphragm, lifelong CR alone or in combination with voluntary exercise did not alter diaphragm CS activity, antioxidant protein quantity, or GSH levels.  相似文献   

8.
Antioxidant enzyme systems in skeletal muscle atrophied by immobilization   总被引:4,自引:0,他引:4  
To clarify the mechanism of oxidative stress in skeletal muscle atrophied by immobilization, we investigated the change of antioxidant enzyme activities in a typical slow red muscle, the soleus. Atrophied soleus muscles were collected from male Wistar rats (16 weeks old), one ankle joint of which had been immobilized in the fully extended position for 7 days. Also, soleus muscles were collected from intact age-matched rats as control. The activities of Mn-containing superoxide dismutase (Mn-SOD), Cu,Zn-containing superoxide dismutase (Cu,Zn-SOD), Se-dependent glutathione peroxidase (Se-GSHPx), glutathione S-transferase (GST), catalase, and glutathione reductase (GSSGRx) were measured. The activities of Cu,Zn-SOD, GST, and GSSGRx were significantly higher in atrophied muscles, while the others were unchanged. Increased Cu,Zn-SOD and unchanged Mn-SOD levels might reflect increased generation of superoxide anions in the cytoplasm rather than in the mitochondria. Owing to the enhancement of Cu,Zn-SOD and the unaltered Se-GSHPx and catalase activities, hydrogen peroxide is thought to be increased in the cytoplasm. Because there is also an increase of iron in the microsomes of atrophied muscles, the production of hydroxyl radicals, the most aggressive of radicals, might consequently be elevated.  相似文献   

9.
The effect of prolonged treatment with the standardized Panax ginseng extract G115 on the antioxidant capacity of the liver was investigated. For this purpose, rats that had received G115 orally at different doses for 3 months and untreated control rats were subjected to exhaustive exercise on a treadmill. A bell-shaped dose response on running time was obtained. The results showed that the administration of G115 significantly increases the hepatic glutathione peroxidase activity (GPX) and the reduced glutathione (GSH) levels in the liver, with a dose-dependent reduction of the thiobarbituric acid reactant substances (TBARS). After the exercise, there is reduced hepatic lipid peroxidation, as evidenced by the TBARS levels in both the controls and the treated animals. The GPX (glutathione peroxidase) and SOD (superoxide dismutase) activity are also significantly increased in the groups receiving G115, compared with the controls. The hepatic transaminase levels, ALT (Alanine-amino-transferase) and AST (Aspartate-amino-transferase), in the recuperation phase 48 h after the exercise, indicate a clear hepatoprotective effect related to the administration of the standardized Panax ginseng extract G115. At hepatic level, G115 increases the antioxidant capacity, with a marked reduction of the effects of the oxidative stress induced by the exhaustive exercise.  相似文献   

10.
The objective of this study was to determine in a rat model of hepatocarcinoma (HCC) the effects of the antiangiogenic agent TNP-470 on antioxidant enzymes, including catalase (CAT), superoxide dismutases (Mn-SOD and Cu,Zn-SOD), and glutathione peroxidase (GPx). Tumor was induced in male Wistar rats by diethylnitrosamine and promoted by two-thirds hepatectomy plus acetaminofluorene administration. Experiments were carried out 28 weeks after initiating the treatment. TNP-470 was administered at 30 mg/kg, 2 times per week from weeks 20 to 28. Carcinomatous tissue was growing outside dysplastic nodules in rats with HCC. HCC caused oxidative stress demonstrated by increased lipid peroxidation and oxidized/reduced glutathione ratio that was accompanied by a reduced activity of antioxidant enzymes Cu,Zn-SOD, GPx, and CAT. In contrast, Mn-SOD activity and expression were higher in hepatocarcinoma than in control groups. These effects were absent in animals receiving TNP-470. No significant differences between untreated and TNP-470-treated rats were observed in the expression of the Cu,Zn-SOD, glutathione peroxidise, and CAT. We conclude that TNP-470 inhibits expression and activity of Mn-SOD induced by experimental hepatocarcinogenesis. Oxidative stress reduction by TNP-470 accounts for yet another anti-cancer effect of this molecule.  相似文献   

11.
To prevent oxidative tissue damage induced by strenuous exercise in the liver and kidney superoxide dismutase derivative (SM-SOD), which circulated bound to albumin with a half-life of 6 h, was injected intraperitoneally into rats. Exhausting treadmill running caused a significant increase in the activities of xanthine oxidase (XO), and glutathione peroxidase (GPX) in addition to concentrations of thiobarbituric acid-reactive substances (TBARS) in hepatic tissue immediately after running. There was a definite increase in the immunoreactive content of mitochondrial superoxide dismutase (Mn-SOD) 1 day after the running. Meanwhile, the TBARS concentration in the kidney was markedly elevated 3 days after running. The activities of GPX, and catalase in the kidney increased significantly immediately and on days 1 and 3 following the test. The immunoreactive content of Mn-SOD also increased 1 day after running. The exercise induced no significant changes in immunoreactive Cu, Zn-SOD content in either tissue. The administration of SM-SOD provided effective protection against lipid peroxidation, and significantly attenuated the alterations in XO and all the anti-oxidant enzymes, measured. In summary, the present data would suggest that exhausting exercise may induce XO-derived oxidative damage in the liver, while the increase in lipid peroxidation in the kidney might be the result of washout-dependent accumulation of peroxidised metabolites. We found that the administration of SM-SOD provided excellent protection against exercise-induced oxidative stress in both liver and kidney.  相似文献   

12.
Physical exercise induces oxidative stress through production of reactive oxygen species and can cause damage to muscle tissue. Oxidative stress, resulting from exhaustive exercise is high and improvement of antioxidant defenses of the body may ameliorate damage caused by free radicals. Extra-virgin olive oil is widely considered to possess anti-oxidative properties. The aim of this study was to determine if extra-virgin olive oil improved the adaptive responses in conditions of oxidative stress. Twenty-four 12-week-old male Sprague-Dawley rats were divided in three groups: (1) rats fed with standard chow and not subjected to physical exercise; (2) rats fed with standard chow and subjected to exhaustive exercise; (3) rats fed with a diet rich in oleic acid, the major component of extra-virgin olive oil, and subjected to exhaustive exercise. Exhaustive exercise consisted of forced running in a five-lane 10° inclined treadmill at a speed of 30 m/min for 70–75 min. We studied some biomarkers of oxidative stress and of antioxidant defenses, histology and ultrastructure of the Quadriceps femoris muscle (Rectus femoris). We observed that, in rats of group 3, parameters indicating oxidative stress such as hydroperoxides and thiobarbituric acid-reactive substances decreased, parameters indicating antioxidant defenses of the body such as non-enzymatic antioxidant capacity and Hsp70 expression increased, and R. femoris muscle did not show histological and ultrastructural alterations. Results of this study support the view that extra-virgin olive oil can improve the adaptive response of the body in conditions of oxidative stress.  相似文献   

13.
The primary purpose of this study was to examine the effects of high-intensity acute exercise on neutrophil infiltration in different muscle fiber types of untrained rats and to compare postexercise neutrophil accumulation in muscles of untrained and trained animals. The effect of high-intensity acute exercise on blood neutrophil degranulation reaction in trained animals was also elucidated. Neutrophil enzyme myeloperoxidase (MPO) was determined as a measure of neutrophil migration into muscles and blood neutrophil degranulation. Male albino rats were subjected to acute exercise and 5 weeks of training. The used model of intensive acute exercise consisted of 5, 15, and 25 intermittent swimming bouts with the addition of weight (8% of total body mass) for 1-min each, followed by 1.5-min rest intervals. MPO was analyzed in quadriceps muscle (white and red portion) and in soleus muscle 24 h after acute exercise. MPO content in resting blood plasma and neutrophils was determined 48-h following the completion of a training process. In addition, MPO content in the trained rats was measured immediately (in blood plasma and neutrophils) after and 24 h (in muscles) following a single-bout of exercise to exhaustion. The remaining two-third of the trained animals were exposed to a single-bout of nonstop swimming with the addition of 6% body mass until exhaustion. These animals were sacrificed immediately and 24 h after loaded swimming to analyze leukocyte count, MPO content in blood plasma and neutrophils and in muscles, respectively. About 24 h after exercise MPO concentrations in the red portion of quadriceps muscle and in soleus muscle were 4–7-fold higher as compared to the white portion of m. quadriceps. There was an association between the quantity of repetitive bouts of swimming and MPO content in the muscles. The duration of swimming to exhaustion of trained rats was 3.8-fold longer than untrained sedentary control. At rest, plasma MPO concentration was found to be 40% higher in trained rats compared to untrained controls (P < 0.05). Postexercise plasma MPO concentrations were significantly higher both in untrained (+137%; P < 0.05) and trained (+81%; P < 0.05) rats compared to resting values. At rest neutrophil MPO concentration was found to be 33% lower in trained rats compared to untrained controls (P < 0.05). There were no significant differences in muscle MPO concentrations between untrained and trained rats at rest. A single-bout of exercise to exhaustion produced a greater increase in MPO content in untrained compared to trained rats. The data suggest that postexercise neutrophil infiltration is more intensive in red fibers types compared to white fiber types. A smaller neutrophil infiltration in muscles of trained animals after exhaustive exercise suggests a protective effect of previous training to muscle injury.Portions of this paper were presented by V. Morozov in 2003 at the 6th ISEI Symposium on Exercise Muscle Metabolism and Immune Function, Copenhagen.  相似文献   

14.
Enzyme activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) were determined in the liver as well as several specific brain regions of young and old Fischer-344 rats of both sexes. In the liver of male rats, activities of CAT as well as Mn-SOD were lower, while activities of Cu Zn-SOD were higher in old (30-month-old) rats than in young (7-month-old) ones. Activities of total SOD as well as GSH Px were comparable for young and old male rat livers. In contrast to male rats, in female rat livers, activities of CAT were significantly higher in old (28-months-old) rats, while activities of Mn-SOD were slightly (but significantly) higher in old rat livers. In old male rats, activities of Mn-SOD were significantly higher than in young males in several specific regions of the brain (the substantia nigra (s. nigra), striatum, hippocampus) but lower in the cerebellum. In particular, SOD activities in s. nigra, striatum and hippocampus in old male rats were several fold higher than corresponding values in young male rats. Activities of Cu Zn-SOD were generally unchanged with age. Activities of CAT as well as GSH-Px (both Se-dependent and non-Se-dependent forms) were also relatively unaffected by age. In female rat brains, activities of Mn-SOD as well as those of others all remained mostly unaffected by aging, although there was a general tendency of slightly higher activities in most cerebral regions for Mn-SOD in old female rats. Thus, age-related changes of these antioxidant enzymes in the liver and brain are markedly sex dependent and some enzyme activities (such as CAT in the liver) change in an opposite direction with age. Changes of Mn-SOD in the brain were markedly region-specific in male rats. Results suggest that the significance of the changes of these antioxidant enzyme activities during aging needs to be carefully interpreted, taking into consideration the fact that changes are markedly variable depending on sex as well as the organs and brain regions examined.  相似文献   

15.
Exercise-induced proteinuria is a common consequence of physical activity, although its mechanism is not clear. We investigated whether free radicals generated during exercise play a role in post-exercise proteinuria in sedentary and treadmill-running trained rats, separately. Sedentary and trained rats were randomly divided into four sub-groups: control, antioxidant treatment, exhaustive exercise and an exhaustive exercise plus antioxidant treatment group. Antioxidant therapy was applied by intragastric catheter for 4 weeks with vitamin C (ascorbic acid, 50 mg·kg–1·day–1) and vitamin E (-tocopherol, 20 mg·kg–1·day–1). Twenty-four-hour urine samples were used for measuring protein levels and protein electrophoresis. Thiobarbituric acid (TBARS) and glutathione (GSH) levels, superoxide dismutase (SOD) and catalase (CAT) activities were assayed in blood and tissues. Increased urinary protein levels and mixed type proteinuria in electrophoresis were identified after exhaustive exercise in sedentary rats. Erythrocyte, kidney and muscle TBARS levels were significantly elevated in this group. Antioxidant treatment prevented the increase in urinary protein levels, TBARS levels and the occurrence of mixed type proteinuria after exhaustive exercise in sedentary rats. Exhaustive exercise in trained rats resulted in elevation of urine protein levels and mixed type proteinuria although kidney TBARS levels were not changed compared to those of the trained controls. Antioxidant therapy in trained and exhausted-trained animals resulted in decreased TBARS levels in the kidney but it did not affect urinary-increased protein levels or electrophoresis in exhausted animals. This findings suggest that the exercise-induced oxidant stress may contribute to post-exercise proteinuria in sedentary rats. However, this mechanism may not be responsible for proteinuria in trained rats.  相似文献   

16.
The aim of this study was to evaluate whether high-intensity endurance training would alleviate exercise-induced oxidative stress. Nine untrained male subjects (aged 19–21 years) participated in a 12-week training programme, and performed an acute period of exhausting exercise on a cycle ergometer before and after training. The training programme consisted of running at 80% maximal exercise heart rate for 60 min · day−1, 5 days · week−1 for 12 weeks. Blood samples were collected at rest and immediately after exhausting exercise for measurements of indices of oxidative stress, and antioxidant enzyme activities [superoxide dismutase (SOD), glutathione peroxidase (GPX), and catalase (CAT)] in the erythrocytes. Maximal oxygen uptake (O2max) increased significantly (P < 0.001) after training, indicating an improvement in aerobic capacity. A period of exhausting exercise caused an increase (P < 0.01) in the ability to produce neutrophil superoxide anion (O2 •−) both before and after endurance training, but the magnitude of the increase was smaller after training (P < 0.05). There was a significant increase in lipid peroxidation in the erythrocyte membrane, but not in oxidative protein, after exhausting exercise, however training attenuated this effect. At rest, SOD and GPX activities were increased after training. However, there was no evidence that exhausting exercise enhanced the levels of any antioxidant enzyme activity. The CAT activity was unchanged either by training or by exhausting exercise. These results indicate that high-intensity endurance training can elevate antioxidant enzyme activities in erythrocytes, and decrease neutrophil O2 •− production in response to exhausting exercise. Furthermore, this up-regulation in antioxidant defences was accompanied by a reduction in exercise-induced lipid peroxidation in erythrocyte membrane. Accepted: 26 September 2000  相似文献   

17.
Male and female Wistar rats were exercise-trained for 6 or 11 weeks respectively, to examine the effects of acute exercise or exercise training per se on insulin-stimulated glucose utilization in soleus muscles isolated and incubated in vitro. The maximal activities of hexokinase and 2-oxoglutarate dehydrogenase were significantly elevated (by greater than 50%) in gastrocnemius muscle of exercise-trained male and female rats, indicating an adaptation to the training regime. No significant differences in any of the variables studied were observed between appropriately matched male and female rats. There were no significant differences in the sensitivity or responsiveness of the rates of lactate formation or glycogen synthesis in soleus muscles isolated from exercise-trained and sedentary animals at rest (exercise-trained animals were studied 40 h after the last exercise bout). On the other hand, acute exercise caused significant changes in soleus muscle glucose metabolism. Basal and insulin-stimulated rates of glycogen synthesis were significantly elevated in soleus muscles incubated from both sedentary and exercise-trained rats immediately after an exercise bout. In addition, the responsiveness of glucose utilization to insulin in soleus muscles from exercise-trained rats was significantly increased after acute exercise. The results indicate that significant changes in the control of glucose metabolism by insulin in soleus muscle occur as a result of an acute exercise bout, while no adaptive changes in insulin sensitivity occur in soleus muscle after exercise training.  相似文献   

18.
Summary to study the effect of downhill running on glycogen metabolism, 94 rats were exercised by running for 3 h on the level or down an 18° incline. Muscle and liver glycogen concentrations were measured before exercise and 0, 48 and 52 h postexercise. Rats were not fed during the first 48 h of recovery but ingested a glucose solution 48 h postexercise. Downhill running depleted glycogen in the soleus muscle and liver significantly more than level running (P<0.01). The amount of glycogen resynthesized in the soleus muscle and liver in fasting or nonfasting rats was not altered significantly by downhill running (P>0.05). On every day of recovery the rats were injected with dexamethasone, which induced similar increases in glycogen concentration in the soleus muscle and liver after the 52nd h of the postexercise period in the case of downhill and level running. The glycogen depletion and repletion results indicated that, under our experimental conditions, downhill running in the rat, a known model of eccentric exercise, affected muscle glycogen metabolism differently from eccentric cycling in humans.  相似文献   

19.
Summary It is thought that exercise training in both man and the rat results in a protective effect against the depletion of carbohydrate stores during exercise (glycogen-sparing). However there has been no comprehensive study of the effects of training on glycogen anabolic and catabolic enzymes with liver or muscle. The aim of this study was to examine whether changes in these enzymes occur and whether these changes may provide an explanation for the glycogen-sparing which results from exercise training.Male rats were trained by a treadmill running program at three different workloads. In addition, there were three control groups: free eating (SF), food restricted (SR), and one SF with a single bout of exercise prior to sacrifice.Exercise training was associated with a 60–150% increase in glycogen synthase and phosphorylase and a 50–70% increase in glycogen content in soleus, an intermediate muscle, but not in extensor digitorum longus (EDL), a white muscle nor in liver. The increase in glycogen synthase and phosphorylase in intermediate muscle was proportional to the degree of training and there was a significant correlation between glycogen content, glycogen synthase, and phosphorylase activity in intermediate muscle. Cytochrome c oxidase activity, an indicator of respiratory capacity, increased 50% in gastrocnemius of trained rats and was significantly correlated with glycogen synthase and phosphorylase in soleus.These results indicate a significant effect of exercise training on glycogen anabolic and catabolic enzymes in intermediate muscle, with no significant effects in white muscle or liver. The changes do not provide an explanation for glycogen-sparing, but are consistent with improved capacity of intermediate muscle for rapid glycogen mobilisation and repletion.  相似文献   

20.
文题释义: BNIP3:隶属于Bcl-2蛋白超家族,是一种线粒体促凋亡蛋白,可与腺病毒转录基因E1B编码的蛋白或Bcl-2蛋白结合。可起到促进细胞凋亡、引起线粒体去极化和自噬,在机体中发挥重要作用。 线粒体自噬:线粒体是细胞的能量工厂,其功能还涉及细胞代谢、信号传导、分化、生长、凋亡和死亡等重要过程。线粒体自噬(mitophagy)是细胞清除损伤或衰老的线粒体,并循环利用其组成元素的过程;与衰老、神经退行性疾病和癌症等诸多生理病理过程密切相关。 背景:不同强度运动对机体可产生不同的影响,运动后骨骼肌的变化也不明确,而运动中机体的生理变化机制更是目前研究的热点。 目的:探讨不同强度运动对大鼠骨骼肌质量的影响以及BNIP3介导的骨骼肌线粒体自噬在维持骨骼肌质量中的作用。 方法:实验方案经北京体育大学动物实验伦理委员会批准。8周龄雄性SD大鼠24只,随机分为对照组、中等强度运动组(5°,15 m/min,1 h,60%VO2max)和大强度运动组(5°,35 m/min,20 min,85%VO2max),每组8只,每周运动6次。4周运动后取大鼠比目鱼肌和腓肠肌,称量湿质量,免疫荧光检测肌纤维横截面积,Western Blot检测比目鱼肌和腓肠肌BNIP3、p62和LC3蛋白的表达。 结果与结论:①腓肠肌湿质量大强度运动组和中等强度运动组显著低于对照组(P < 0.01);②比目鱼肌肌纤维横截面积大强度运动组显著小于对照组(P < 0.01);腓肠肌肌纤维横截面积中等强度运动组和大强度运动组均显著大于对照组(P < 0.01);③中等强度运动诱导线粒体自噬增加,表现为BNIP3、LC3-Ⅱ/LC3-Ⅰ值相较对照组表达增加(P < 0.05),而p62较对照组表达下降(P < 0.05);大强度运动组LC3-Ⅱ/LC3-Ⅰ、p62的表达量相较4周中等强度运动分别为上升和下降(P < 0.05),但其BNIP3的表达量却下降(P < 0.05);④结果表明,4周中等强度运动可促进骨骼肌通过BNIP3途径的线粒体自噬清除损伤线粒体,维持骨骼肌功能。4周大强度运动自噬水平更高,但可能对骨骼肌产生不利影响。 ORCID: 0000-0003-3836-3002(于亮) 中国组织工程研究杂志出版内容重点:组织构建;骨细胞;软骨细胞;细胞培养;成纤维细胞;血管内皮细胞;骨质疏松;组织工程  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号