首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary We have previously described a visual area situated in the cortex surrounding the deep infolding of the anterior ectosylvian sulcus of the cat (Mucke et al. 1982). Using orthograde and retrograde transport methods we now report anatomical evidence that this anterior ectosylvian visual area (AEV) is connected with a substantial number of both cortical and subcortical regions. The connections between AEV and other cortical areas are reciprocal and, at least in part, topographically organized: the rostral AEV is connected with the bottom region of the presylvian sulcus, the lower bank of the cruciate sulcus, the rostral part of the ventral bank of the splenial sulcus, the rostral portion of the lateral suprasylvian visual area (LS) and the lateral bank of the posterior rhinal sulcus; the caudal AEV is connected with the bottom region of the presylvian sulcus, the caudal part of LS, the ventral part of area 20 and the lateral bank of the posterior rhinal sulcus. Subcortically, AEV has reciprocal connections with the ventral medial thalamic nucleus (VM), with the medial part of the lateralis posterior nucleus (LPm), as well as with the lateralis medialis-suprageniculate nuclear (LM-Sg) complex. These connections are also topographically organized with more rostral parts of AEV being related to more ventral portions of the LPm and LM-Sg complex. AEV also projects to the caudate nucleus, the putamen, the lateral amygdaloid nucleus, the superior colliculus, and the pontine nuclei. It is concluded that AEV is a visual association area which functionally relates the visual with both the motor and the limbic system and that it might play a role in the animal's orienting and alerting behavior.Abbreviations Ac aqueductus cerebri - AEs anterior ectosylvian sulcus - ALLS anterolateral lateral suprasylvian area - AMLS anteromedial lateral suprasylvian area - ASs anterior suprasylvian sulcus - Cd caudate nucleus - CL central lateral nucleus - Cl claustrum - Cos coronal sulcus - Crs cruciate sulcus - DLS dorsal lateral suprasylvian area - GI stratum griseum intermediale - GP stratum griseum profundum - IC inferior colliculus - LAm lateral amygdaloid nucleus - LGNd dorsal nucleus of lateral geniculate body - LGNv ventral nucleus of lateral geniculate body - Llc nucleus lateralis intermedius, pars caudalis - LM nucleus lateralis medialis - LPl nucleus lateralis posterior, pars lateralis - LPm nucleus lateralis posterior, pars medialis - Ls lateral sulcus - MD nucleus mediodorsalis - MG medial geniculate body - MSs middle suprasylvian sulcus - Ndl nucleus dorsolateralis pontis - Nl nucleus lateralis pontis - Np nucleus peduncularis pontis - Npm nucleus paramedianus pontis - Nrt nucleus reticularis tegmenti pontis - Nv nucleus ventralis pontis - Ped cerebral peduncle - PEs posterior ectosylvian sulcus - Pg periaqueductal gray - PLLS posterolateral lateral suprasylvian area - PMLS posteromedial lateral suprasylvian area - PSs presylvian sulcus - Pul pulvinar - Put putamen - R red nucleus - Sg suprageniculate nucleus - SN substantia nigra - Sps splenial sulcus - Syls sylvian sulcus - T trapezoid body - VA ventral anterior nucleus - VL ventral lateral nucleus - VLS ventral lateral suprasylvian area - VM ventral medial nucleus - VPL ventral posterolateral nucleus - VPM ventral posteromedial nucleus Sponsored by Max-Planck-Society during part of the studySponsored by Thyssen FoundationSponsored by Alexander von Humboldt-Foundation  相似文献   

2.
Summary The cortical afferents to the cortex of the anterior ectosylvian sulcus (SEsA) were studied in the cat, using the retrograde axonal transport of horseradish peroxidase technique. Following injections of the enzyme in the cortex of both banks, fundus and both ends (postero-dorsal and anteroventral) of the anterior ectosylvian sulcus, retrograde labeling was found in: the primary, secondary, and tertiary somatosensory areas (SI, SII and SIII); the motor and premotor cortices; the primary, secondary, anterior and suprasylvian fringe auditory areas; the lateral suprasylvian (LS) area, area 20 and posterior suprasylvian visual area; the insular cortex and cortex of posterior half of the sulcus sylvius; in area 36 of the perirhinal cortex; and in the medial bank of the presylvian sulcus in the prefrontal cortex. Moreover, these connections are topographically organized. Considering the topographical distribution of the cortical afferents, three sectors may be distinguished in the cortex of the SEsA. 1) The cortex of the rostral two-thirds of the dorsal bank. This sector receives cortical projections from areas SI, SII and SIII, and from the motor cortex. It also receives projections from the anterolateral subdivision of LS, and area 36. 2) The cortex of the posterior third of the dorsal bank and of the posterodorsal end. It receives cortical afferents principally from the primary, secondary and anterior auditory areas, from SI, SII and fourth somatosensory area, from the anterolateral subdivision of LS, vestibular cortex and area 36. 3) The cortex of the ventral bank and fundus. This sulcal sector receives abundant connections from visual areas (LS, 20, posterior suprasylvian, 21 and 19), principally from the lateral posterior and dorsal subdivisions of LS. It also receives abundant connections from the granular insular cortex, caudal part of the cortex of the sylvian sulcus and suprasylvian fringe. Less abundant cortical afferents were found to arise in area 36, second auditory area and prefrontal cortex. The abundant sensory input of different modalities which appears to converge in the cortex of the anterior ectosylvian sulcus, and the consistent projection from this cortex to the deep layers of the superior colliculus, make this cortical region well suited to play a role in the control of the orientation movements of the eyes and head toward different sensory stimuli.Supported by FISSS grants 521/81 and 1250/84  相似文献   

3.
Summary The interconnections of the auditory cortex with the parahippocampal and cingulate cortices were studied in the cat. Injections of the anterograde and retrograde tracer WGA-HRP were performed, in different cats (n = 9), in electrophysiologically identified auditory cortical fields. Injections in the posterior zone of the auditory cortex (PAF or at the PAF/AI border) labeled neurons and axonal terminal fields in the cingulate gyrus, mainly in the ventral bank of the splenial sulcus (a region that can be considered as an extension of the cytoarchitectonic area Cg), and posteriorly in the retrosplenial area. Labeling was also present in area 35 of the perirhinal cortex, but it was sparser than in the cingulate gyrus. Following WGA-HRP injection in All, no labeling was found in the cingulate gyrus, but a few neurons and terminals were labeled in area 35. In contrast, no or very sparse labeling was observed in the cingulate and perirhinal cortices after WGA-HRP injections in the anterior zone of the auditory cortex (AI or AAF). A WGA-HRP injection in the cingulate gyrus labeled neurons in the posterior zone of the auditory cortex, between the posterior ectosylvian and the posterior suprasylvian sulci, but none was found more anteriorly in regions corresponding to AI, AAF and AII. The present data indicate the existence of preferential interconnections between the posterior auditory cortex and the limbic system (cingulate and parahippocampal cortices). This specialization of posterior auditory cortical areas can be related to previous observations indicating that the anterior and posterior regions of the auditory cortex differ from each other by their response properties to sounds and their pattern of connectivity with the auditory thalamus and the claustrum.Abbreviations AAF anterior auditory cortical field - aes anterior ectosylvian sulcus - AI primary auditory cortical field - AII secondary auditory cortical field - ALLS anterior-lateral lateral suprasylvian visual area - BF best frequency - C cerebral cortex - CC corpus callosum - CIN cingulate cortex - CL claustrum - DLS dorsal lateral suprasylvian visual area - DP dorsoposterior auditory area - E entorhinal cortex - IC inferior colliculus - LGN lateral geniculate nucleus - LV pars lateralis of the ventral division of the MGB - LVe lateral ventricule - MGB medial geniculate body - OT optic tract - OV pars ovoidea of the ventral division of the MGB - PAF posterior auditory cortical field - pes posterior ectosylvian sulcus - PLLS posterior-lateral lateral suprasylvian visual area - PS posterior suprasylvian visual area - PU putamen - RE reticular complex of thalamus - rs rhinal sulcus - SC superior colliculus - SS suprasylvian sulcus - T temporal auditory cortical field - TMB tetramethylbenzidine - VBX ventrobasal complex of thalamus, external nucleus - VL pars ventrolateralis of the ventral division of the MGB - VLS ventrolateral suprasylvian visual area - VPAF ventroposterior auditory cortical field - WGA-HRP wheat germ agglutinin labeled with horseradish peroxidase - wm white matter  相似文献   

4.
Summary The fluorescent double-labeling technique has been used to determine whether the corticopontine and the corticotectal fibers in the cat are derived from two different sets of neurons or whether they are derived from branching neurons which distribute collaterals to the pontine grey and the colliculi. After unilateral DY.2HCl injections in the pontine grey and FB injections in the ipsilateral colliculi, large numbers of FB-DY.2HCl double-labeled neurons were present in the cortex of the ipsilateral hemisphere. However, the labeled neurons in its rostral part may have represented pyramidal tract neurons which were labeled retrogradely because their fibers descended through the DY.2HCl injection area. Therefore, also DY.2HCl injections were made in the pyramid (i.e. caudal to the pons) and the cortical pyramidal tract area, containing the retrograde DY.2HCl-labeled neurons, was delineated. In the rest of the experiments only the DY.2HCl-labeled neurons in the caudal two thirds of the hemisphere (outside the pyramidal tract area) were taken into account because only these neurons could, with confidence, be regarded as corticopontine neurons. In some anterograde HRP transport experiments the trajectories of the corticotectal and the corticopontine fibers were visualized. On the basis of the findings the DY.2HCl injections in the pontine grey were placed such that they could not involve any of the corticotectal fibers passing from the cerebral peduncle to the colliculi. Thus artifactual doublelabeling of cortical neurons was avoided. However, also under these circumstances many double-labeled neurons were present in the caudal two thirds of the hemisphere. This led to the conclusion that in the cat a large proportion of the corticopontine neurons in the caudal two thirds of the hemisphere represent branching neurons which also distribute collaterals to the colliculi. The parietal (anterior part of the lateral gyrus, middle and posterior suprasylvian gyri) and the cingulate areas together contained three quarters of all labeled corticopontine neurons outside the pyramidal tract area. In the parietal areas roughly 25% of them were double-labeled and in the cingulate area 14%. However, in the visual areas 18 and 19 a much larger percentage (30–60%) was doublelabeled. In a recent study from our laboratory it was found that in the cat the pyramidal tract fibers distribute an abundance of collaterals to the pontine grey. Therefore, a large proportion of all corticopontine connections in this species appear to be established by branching neurons which also distribute fibers to other cell groups in the brain stem and the spinal cord.Abbreviations A.E. anterior ectosylvian sulcus - a.e.s. anterior ectosylvian sulcus - BC brachium conjunctivum - BCI brachium colliculus inferior - BP brachium pontis - cor. sulc. coronal sulcus - CP cerebral peduncle - CR. cruciate sulcus - CUN cuneiform nucleus - DBC decussation brachium conjunctivum - DLP dorsolateral pontine nucleus - IC inferior colliculus - inf. coll. inferior colliculus - INS. insula cortex - IO inferior olive - IP interpeduncular nucleus - LAT. lateral sulcus - l.s. lateral sulcus - MG medial geniculate body - LL lateral lemniscus - ML medial lemniscus - MLF medial longitudinal fascicle - NdG dorsal nucleus of Gudden - NLL nucleus lateral lemniscus - NRTP reticular tegmental pontine nucleus - ORB. orbital sulcus - P pyramid - PAG periaqueductal grey - P.E. posterior ectosylvian sulcus - RF reticular formation - PG pontine grey - RB restiform body - RN red nucleus - S. sylvian sulcus - SC superior colliculus - SN substantia nigra - SO superior olive - SPV spinal trigeminal complex - S.S. suprasylvian sulcus - s.syl.s. suprasylvian sulcus - S.SPL. suprasplenial sulcus - SPL. splenial sulcus - spl.s. splenial sulcus - sup. coll. superior colliculus - syl.s. sylvian sulcus - TB trapezoid body - VC vestibular complex - Vm trigeminal motor nucleus - Vs trigeminal principle nucleus - III oculomotor nucleus - IV trochlear nucleus - VI abducens nucleus - VII facial nerve - VIII vestibulo-trochlear nerve Supported in part by grant 13-46-91 of FUNGO/ZWO (Dutch Organization for Fundamental Research in Medicine)  相似文献   

5.
The afferent and efferent cortical and subcortical connections of the medial posterior parietal cortex (area 7m) were studied in cebus (Cebus apella) and macaque (Macaca fascicularis) monkeys using the retrograde and anterograde capabilities of the horseradish peroxidase (HRP) technique. The principal intraparietal corticocortical connections of area 7m in both cebus and macaque cases were with the ipsilateral medial bank of the intraparietal sulcus (MIP) and adjacent superior parietal lobule (area 5), inferior parietal lobule (area 7a), lateral bank of the IPS (area 7ip), caudal parietal operculum (PGop), dorsal bank of the caudal superior temporal sulcus (visual area MST), and medial prestriate cortex (including visual area PO and caudal medial lobule). Its principal frontal corticocortical connections were with the prefrontal cortex in the shoulder above the principal sulcus and the cortex in the shoulder above the superior ramus of the arcuate sulcus (SAS), the area purported to contain the smooth eye movement-related frontal eye field (FEFsem) in the cebus monkey by other investigators. There were moderate connections with the cortex in the rostral bank of the arcuate sulcus (purported to contain the saccade-related frontal eye field; FEFsac), supplementary eye field (SEF), and rostral dorsal premotor area (PMDr). Area 7m also had major connections with the cingulate cortex (area 23), particularly the ventral bank of the cingulate sulcus. The principal subcortical connections of area 7m were with the dorsal portion of the ventrolateral thalamic (VLc) nucleus, lateral posterior thalamic nucleus, lateral pulvinar, caudal mediodorsal thalamic nucleus and medial pulvinar, central lateral, central superior lateral, and central inferior intralaminar thalamic nuclei, dorsolateral caudate nucleus and putamen, middle region of the claustrum, nucleus of the diagonal band, zona incerta, pregeniculate nucleus, anterior and posterior pretectal nuclei, intermediate layer of the superior colliculus, nucleus of Darkschewitsch and dorsomedial parvicellular red nucleus (macaque cases only), dorsal, dorsolateral and lateral basilar pontine nuclei, nucleus reticularis tegmenti pontis, locus ceruleus, and superior central nucleus. The findings are discussed in terms of the possibility that area 7m contains a "medial parietal eye field" and belongs to a neural network of oculomotor-related structures that plays a role in the control of eye movement.  相似文献   

6.
On anatomical and physiological grounds a zone of cat cortex deep in the medial bank of the suprasylvian sulcus (the Clare-Bishop area) is known to receive strong visual projections both from the lateral geniculate body and area 17. We have mapped receptive fields of single cells in this area in eight cats.Active responses to visual stimuli were found over most of the medial bank of the suprasylvian sulcus extending to the depths and over to the lowest part of the lateral bank. The area is clearly topographically arranged. The first responsive cells, recorded over the lateral convexity and 2-3 mm down the medial bank, had receptive fields in the far periphery of the contralateral visual fields. The receptive fields tended to be large, but showed considerable variation in size and scatter in their positions. As the electrode advanced down the bank, fields of successively recorded cells gradually tended to move inwards, so that in the depths of the sulcus the inner borders of many of the fields reached the vertical mid line. Here the fields were smaller, though they still varied very much in size.Receptive fields were larger than in 17, 18, or 19, but otherwise were not obviously different from the complex and lower-order hypercomplex fields in those areas. No simple fields, or concentric fields of the retino-geniculate type, were seen. Cells with common receptive-field orientation were grouped together, but whether or not the grouping occurs in columns was not established.Most cells were driven independently by the two eyes. Fields in the two eyes seemed to be identical in organization. Cells dominated by the contralateral eye were much more common than ipsilaterally dominated ones, but when cells with parafoveal and peripheral fields were considered separately, the asymmetry was seen to apply mainly to cells with peripheral fields.  相似文献   

7.
Summary Layer VI of macaque striate cortex contains a number of large solitary neurones called Meynert cells. It has been shown earlier that these Meynert cells project to the posterior bank of the superior temporal sulcus (area V5), but it has also been shown that they project to the superior colliculus. In retrograde fluorescent double-labelling experiments, it was found that Meynert cells represent a class of neurones which distribute divergent axon collaterals to the posterior bank of the superior temporal sulcus and to the superior colliculus, i.e. to a distant cortical and a subcortical structure. This feature appears to be unique among projecting neurones in monkey visual cortex.  相似文献   

8.
Pupillary constriction was evoked by systematic stimulation using a microelectrode in the upper medial bank of the middle suprasylvian sulcus in the parieto-occipital cortex of the cat. The pupillo-constrictor area corresponded to the rostral and middle parts of the posterior medial lateral suprasylvian (PMLS) area. This pupillo-constrictor area extended by 2-3 mm along the middle suprasylvian sulcus. It is suggested that this pupillo-constrictor area overlaps or lies in close proximity of a part of the region in PMLS area related to lens accommodation, in which unit activity temporally related to lens accommodation was recorded and from which lens accommodation was evoked by electric stimulation.  相似文献   

9.
Summary In this paper a cortical area is described that covers approximately the posterior two-thirds of the ventral bank of the anterior ectosylvian sulcus of the cat and is called anterior ectosylvian visual area (AEV).In cats anesthetized with a combination of N2O and barbiturate we explored this area by recording extracellularly the responses of AEV neurons to visual and electric stimulation as well as by injecting HRP into physiologically verified points. AEV neurons were found to be highly sensitive to small light stimuli moving rapidly in a particular direction through their large receptive fields. The properties of 74 neurons were quantitatively analyzed. Increasing the length of the stimulus within the receptive field to more than 2 deg strongly inhibited the responses, whereas increasing the speed of the stimulus movement up to 72–120 deg/s enhanced the neuronal responsiveness. Although the majority of neurons responded to a wide range of possible directions, one clearly preferred direction could usually be found for each neuron. There was a predominance of preferred directions toward the contralateral hemifield. Anatomic and electrophysiologic connectivity studies showed that AEV receives its main afferent inputs from the lateral suprasylvian visual area (LS) and from the tecto-recipient zone of the nucleus lateralis posterior (LP)-pulvinar complex.Although these studies suggested some topographical organization within the projection from LS to AEV, the large receptive fields in AEV, the great majority of which included the central area, did not reveal a clear retinotopic order. It is concluded that AEV is a specific visual area and that functionally the extrageniculate inputs predominate.Abbreviations AEs anterior ectosylvian sulcus - ALLS anterolateral lateral suprasylvian area - AMLS anteromedial lateral suprasylvian area; - Cl Claustrum - DLS dorsal lateral suprasylvian area - LGNd dorsal nucleus of lateral geniculate body - LGNv ventral nucleus of lateral geniculate body - LM nucleus lateralis medialis - LP1a nucleus lateralis posterior, pars lateralis - LPm nucleus lateralis posterior, pars medialis - Ls lateral sulcus - MGmc magnocellular division of medial geniculate body - MGpc parvocellular division of medial geniculate body - MSs middle suprasylvian sulcus - NP nucleus posterior of Rioch - PLLS postero-lateral lateral suprasylvian area - PLs posterolateral sulcus - PMLS posteromedial lateral suprasylvian area - Pu putamen - Pul pulvinar - Sg suprageniculate nucleus - VLS ventral lateral suprasylvian area Sponsored by Max-Planck-Gesellschaft and IBRODept. of Anatomy, School of Medicine, Iwate Medical University, Morioka 020, JapanSponsored by Alexander von Humboldt-FoundationDept. of Physiology, University Medical School, Szeged, Hungary  相似文献   

10.
Cortical units were sought that discharged in temporal correlation with spontaneously occurring lens accommodation in the area surrounding the middle suprasylvian sulcus, between the stereotaxic coordinates A8.0 and P1.0, while monitoring lens accommodation by using an infrared optometer. Units were tentatively identified as accommodation related if their discharges were modulated before the onset times of lens accommodation. Forty-eight accommodation-related units were found. Modulation of discharges preceded the onset times of accommodation by 360 ms on the average. Most (95%) of these units were related to the increase in the refractive power of the lens. Antidromic activation from the dorsal midbrain was tested in 26 of 48 accommodation-related units. Fourteen (67%) units were antidromically activated from the superior colliculus and/or the pretectum. Nine (64%) of them were also activated antidromically from the lateral posterior nucleus of the thalamus. The location of these units were confirmed by histological reconstruction. They were found in the posterior medial and posterior lateral lateral suprasylvian (PMLS and PLLS) areas and in the transitional zone of PMLS to the suprasylvian gyrus, between stereotaxic coordinates A7.0 and A1.5.  相似文献   

11.
Summary Cortical projections from the contralateral hemisphere to the superior colliculus (SC) were studied in macaque monkey using retrograde transport of the enzyme horseradish peroxidase (HRP). After single or multiple injections of HRP into SC, labelled cells were found contralaterally in layer V of the anterior bank of the arcuate sulcus, the origin of this contralateral projection being confined to the anterior part of Brodmann's area 6. Only a few labelled cells appeared in adjacent area 8. Labelled cells occured in patches, forming bands which were found to run in a ventromedial direction. A similar pattern was seen homotopically in ipsilateral area 6. Thus, this anterior part of area 6 gives rise to a bilateral projection to the SC. The findings emphasize structural differences in a region of the frontal lobe which has been considered functionally uniform as frontal eye field.Supported by Deutsche Forschungsgemeinschaft (SFB 50/C6 and Di 212/2)  相似文献   

12.
Summary Push-pull cannulae were inserted into both medial and lateral banks of the suprasylvian sulcus and used for local perfusion with artificial extracellular fluid (aECF). Electrical stimulations of regions of cortex projecting to the lateral suprasylvian area (LSA) were accompanied by enhanced levels of release of excitatory amino acids. Electrical stimulation of the area 17/18 border evoked a greater release of aspartate relative to glutamate in the medial bank of the LSA (posteromedial lateral suprasylvian: PMLS), of glutamate over aspartate in the lateral bank (posterolateral lateral suprasylvian: PLLS) while in the fundus, both were released equally or glutamate levels were slightly elevated over those of aspartate. These data support and extend the earlier proposition (Hicks and Guedes 1983) that an excitatory amino acid mediates synaptic transmission within visual cortico-cortical pathways.  相似文献   

13.
Investigation of eye movement-related activities and photic responsiveness using behaving cats demonstrated distinctive representations of eye movement signals in different areas of the lateral suprasylvian cortex: visual reafference in the medial bank of the middle suprasylvian sulcus and non-visual signals (proprioceptive reafference or efference copy) in the lateral bank.  相似文献   

14.
The association connexions of the peri-auditory (SF, Ea and INS) and auditory (AI, AII and Ep) areas of the cat cortex were studied in silver impregnated material of 32 experiments with cortical lesions. The cortex of the lateral bank of the rostral part of the middle suprasylvian sulcus (SF) sends many fibres to AI and to the insular cortex (INS), and has scanty projections upon AII and Ep. In addition, it sends fibres to the visual area 17 as well as to the ventral bank of the medial part of the cruciate sulcus. It receives fibres from the three auditory areas AI, AII and Ep, as well as from Ea and INS. The dorsal part of the anterior ectosylvian gyrus (Ea) projects upon SF, AI, and AII. Ea sends few fibres to Ep, and receives relatively dense projections from AI and AII. The anterior sylvian gyrus (INS) projects heavily upon AII as well as upon the superficial part of SF. It sends a few fibres also to Ep. INS receives heavy projections from AII and relatively lighter connections from SF, AI and Ep. The three auditory areas AI, AII and Ep are strongly mutually interconnected. AI and Ep have scanty projections upon the visual area 19, and AI also to the lateral suprasylvian visual area, as well as upon the ventral bank of the medial cruciate sulcus. Correlations of the association connexions with the functions of each area are discussed.  相似文献   

15.
N Kato  J M Ferrer  D J Price 《Neuroscience》1991,43(2-3):291-306
The postnatal development of corticocortical neurons projecting from the medial bank of the lateral suprasylvian cortex to area 18 of the kitten's visual cortex was examined using retrograde fluorescent tracers. Area 18 was injected in young kittens aged nine days or less and in older kittens aged 30 days or more. Many of the injected kittens were perfused with fixative four to five days later, but some of the youngest were killed after longer survival periods of 35-50 days (long-survival animals). Labelled neurons in the medial bank of the lateral suprasylvian cortex were densely distributed in both superficial layers (II and III) and deep layers (V and VI) in the kittens injected less than nine days postnatal, irrespective of whether survival was short or long, but they were found almost exclusively in layers V and VI in the old, short-survival animals. Only in the group of old kittens did we find a clear topographical arrangement of projections in the rostrocaudal direction and a correlation between the rostrocaudal lengths of the injection sites and labelled areas. In the other two groups, for a similarly sized injection site, the labelled areas were much longer rostrocaudally than in the old, short-survival kittens, and occupied roughly the posterior two-thirds of the medial bank of the lateral suprasylvian cortex, irrespective of the positions of the injections. In the frontal plane, topography was unclear in all groups. These findings demonstrate that there is considerable postnatal refinement of the projection from the medial bank of the lateral suprasylvian cortex to area 18. This involves a loss of connections originating from superficial layers and a decrease of convergence with the appearance of topography. Our results from long-survival kittens suggest that most of the early exuberant population of corticocortical neurons projecting from the medial bank of the lateral suprasylvian cortex to area 18 survive beyond the first postnatal month but undergo axonal elimination during this period.  相似文献   

16.
The anterograde and retrograde transport of wheat germ agglutinin congugated to horseradish peroxidase was used to examine the laminar organization of cortical connections with the two visual zones that comprise the cat's lateral posterior nucleus. Microelectrophoretic deposits of the tracer into the principal tecto-recipient zone in the medial division of the lateral posterior nucleus revealed reciprocal connections with the following cortical fields: areas 19 and 21a, the medial and lateral banks of the middle suprasylvian sulcus, and the dorsal and ventral banks of the lateral suprasylvian sulcus, which correspond to the dorsal lateral suprasylvian and ventral lateral suprasylvian visual areas of Palmer et al. [(1978) Brain Res. 177, 237-256] and an area in the fundus of the posterior suprasylvian sulcus. In each of these cortical areas two distinct populations of cells were labeled, small pyramidal neurons in layer VI and large pyramidal cells in layer V. Overlying these backfilled cells were two bands of anterograde label, a narrow strip in layer I and a wide band centered in layer IV. Deposits of wheat germ agglutinin conjugated to horseradish peroxidase confined to the striate-recipient zone in the lateral portion of the lateral posterior nucleus resulted in cortical label in areas 17, 18, 19, 20a and b, 21a, the medial and lateral banks of the middle suprasylvian sulcus, the posterior suprasylvian sulcus and in the fundus of the splenial sulcus. In all cortical areas other than 17 and 18, the laminar distribution of label was the same as that found after deposits of the tracer into the medial division of the lateral posterior nucleus. In contrast, areas 17 and 18 contained backfilled cells that were confined to layer V and anterograde label that was restricted to layer I. These findings indicate that the cortical areas that receive a direct projection from the A laminae of the dorsal lateral geniculate nucleus maintain a distinct laminar organization of reciprocal connections with the extrageniculate visual thalamus. Conversely, all other visual areas of the cortex share a common pattern of reciprocal connections with both the tecto- and striate-recipient zones of the lateral posterior nucleus.  相似文献   

17.
Summary The corticothalamic connections of the superior temporal sulcus (STS) were studied by means of the autoradiographic technique. The results indicate that corticothalamic connections of the STS in general reciprocate thalamocortical connections. The cortex of the upper bank of the STS-multimodal areas TPO and PGa-projects to four major thalamic targets: the pulvinar complex, the mediodorsal nucleus, the limitanssuprageniculate nucleus, as well as intralaminar nuclei. Within the pulvinar complex, the main projections of the upper bank of the STS are directed to the medial pulvinar (PM) nucleus. Rostral upper bank regions tend to project caudally and medially within the PM nucleus, caudal upper bank regions, more laterally and ventrally. The mid-portion of the upper bank tends to occupy the central sector of the PM nucleus. There are also relatively minor projections from upper bank regions to the lateral pulvinar (PL) and oral pulvinar (PO) nuclei. In contrast to the upper bank, the projections from the lower bank are directed primarily to the pulvinar complex, with only minor projections to intralaminar nuclei. The rostral portion of the lower bank projects mainly to caudal and medial regions of the PM nucleus, whereas the caudal lower bank projects predominantly to the lateral PM nucleus, and also to the PL, PO, and inferior pulvinar (PI) nuclei. The mid-portion of the lower bank projects mainly to central and lateral portions of the PM nucleus, and also to the PI and PL nuclei. The rostral depth of the STS projects mainly to the PM nucleus, with only minor connections to the PO, PI, and PL nuclei. The midportion of multimodal area TPO of the upper bank, areas TPO2 and TPO3, projects preferentially to the central sector of the PM nucleus. It is possible that this STS-thalamic connectivity has a role in behavior that is dependent upon more than one sensory modality.Abbreviations AM anterior medial nucleus - AS arcuate sulcus - AV anterior ventral nucleus - BSC brachium of the superior colliculus - Cd caudate nucleus - Cif nucleus centralis inferior - Cim nucleus centralis intermedialis - CL central lateral nucleus - CM centromedian nucleus - CM-Pf centromedian-parafascicular nucleus - Cs nucleus centralis superior - CS central sulcus - CSL nucleus centralis lateralis superior - GLd dorsal lateral geniculate nucleus - GM medial geniculate nucleus - Hb habenula - IOS inferior occipital sulcus - IPS intraparietal sulcus - LD lateral dorsal nucleus - LF lateral fissure - Li limitans nucleus - LP lateral posterior nucleus - LS lunate sulcus - MD mediodorsal nucleus - Pa paraventricular nucleus - Pen paracentral nucleus - Pf parafascicular nucleus - PI inferior pulvinar nucleus - PL lateral pulvinar nucleus - PM medial pulvinar nucleus - PO oral pulvinar nucleus - PS principal sulcus - Pt parataenial nucleus - R reticular nucleus - Re reuniens nucleus - SG suprageniculate nucleus - STN subthalamic nucleus - STS superior temporal sulcus - THI habenulo-interpeduncular tract - VLc nucleus ventralis lateralis, pars caudalis - VLm nucleus ventralis lateralis, pars medialis - VLo nucleus ventralis lateralis, pars oralis - VLps nucleus ventralis lateralis, pars postrema - VPI ventroposteroinferior nucleus - VPLc nucleus ventralis posterior lateralis, pars caudalis - VPLo nucleus ventralis posterior lateralis, pars oralis - VPM ventroposteromedial nucleus - VPMpc ventroposteromedial nucleus, parvocellular portion - X nucleus X  相似文献   

18.
We have used retrograde and anterograde transport to examine the major visual pathways in newborn kittens. Retinal projections from both eyes to the dorsal lateral geniculate nucleus (dLGN) and superior colliculus (SC) are present and topographically organized. The dLGN projects topographically to areas 17 and 18 and receives reciprocal projections from cells in layer VI of areas 17, 18, 19 and suprasylvian cortex on the same side of the brain. Area 19 also has a sparse thalamic input but probably not from the dLGN. The laminar distribution of [3H]proline transported from dLGN to area 17 was quantified: label was spread through all layers, with a minimum at the border of layers I/II. Layer I was always labelled less heavily than IV. These results are critically compared with those based on other tracing techniques. Cells of layer V in areas 17, 18, 19 and the suprasylvian cortex project topographically to the superficial layers of the ipsilateral SC. Area 19 and the lateral suprasylvian cortex also send a crossed projection to restricted parts of the opposite SC. Thus these visual projections are not only present and topographically ordered on the day of birth, but, unlike certain highly exuberant interhemispheric and cortico-cortical projections, they are qualitatively remarkably mature, some days before the onset of visual activity. The major subcortical projections to and from the visual cortex appear to be constructed without the benefit of visual experience and much of the activity-dependent plasticity of cortical cells may well involve only local modulation of synaptic input.  相似文献   

19.
Cat lateral suprasylvian cortex: Y-cell inputs and corticotectal projection   总被引:1,自引:0,他引:1  
Retinal Y-cells activate most cells in the deep layers of the cat's superior colliculus via an indirect pathway involving the occipital cortex. The lateral suprasylvian area seems to be an important source of visual input to the deep collicular strata but it is unclear whether Y-cell influences reach this extrastriate area and, hence, whether this area participates in the indirect Y-cell pathway. In this study, retinal influences on the posteromedial lateral suprasylvian area (PMLS) were studied in anesthetized cats. Responses to electrical stimulation of the optic disk (OD) and optic chiasm (OX) were recorded in single units in PMLS and in neurons of the dorsal lateral geniculate nucleus (LGNd) that were antidromically driven from PMLS. Virtually all PMLS cells (99%; 99/100) exhibited small differences (less than or equal to 0.8 ms) between OD- and OX-activation latency, indicating that they were driven by a pathway originating in rapidly conducting Y-cell axons. A small number of PMLS cells (17%; 20/118) had very short activation latencies (less than or equal to 3.2 ms from OX), comparable to those of cells in areas 17 and 18 receiving monosynaptic inputs from geniculate Y-cells. Further, LGNd cells with latency behaviors typical of Y-cells could be antidromically driven from PMLS, confirming that geniculate Y-cells project directly to PMLS. Most PMLS cells (83%; 98/118), though exhibiting small OD-OX latency differences, had absolute latencies too long to be attributed to direct inputs from geniculate Y-cells (3.3-8.5 ms from OX). Thus Y-cells in the LGNd influence most PMLS cells by way of a multisynaptic pathway. PMLS cells antidromically activated from the superior colliculus were driven only by this multisynaptic Y-cell input. Total conduction time from the retina through PMLS to the colliculus corresponds closely to the latency of the indirect Y-cell activation observed in the deep collicular layers. These results support the view that the lateral suprasylvian cortex constitutes an important source of visual input to the cat's deep collicular layers and, more generally, that the extrastriate visual cortex may figure prominently in the cortical control of gaze.  相似文献   

20.
Bilateral electrolytic lesions and unilateral tracer injections were performed in lactating rats in order to study the participation of the mesencephalic lateral tegmentum in the milk-ejection reflex. The release of oxytocin was detected as a rise in intramammary pressure during each milk ejection. In animals with lesions, the lateral part of the deep grey layers of the superior colliculus, the intercollicular area and the rostromedial portion of the external nucleus of the inferior colliculus were destroyed. The mesencephalic lateral tegmentum of animals in which the milk-ejection reflex was blocked sustained a larger damage than in rats where the frequency of the milk-ejection response was only slowed down. Solutions of True Blue, horseradish peroxidase or horseradish peroxidase coupled to wheat germ agglutinin were injected in the mesencephalic lateral tegmentum of rats with and without lesions. Retrogradely labelled cells were found in several nuclei of the somatosensory pathways: the principal sensory and spinal parts of the trigeminal complex, the cuneate and gracile nuclei, the lateral cervical nucleus and the nucleus proprius of the spinal cord. Labelled cells were also found in the ventral nucleus of the lateral lemniscus, the ventral parabrachial nucleus, the gigantocellular reticular nucleus, the lateral nucleus of the substantia nigra, the prerubral nucleus of the thalamus, the hypothalamic ventromedial nucleus, the zona incerta and in the anterior and lateral hypothalamic areas. Labelled fibres and "terminal-like" labelling were found in the anterior pretectal area, in the thalamic parafascicular nucleus, in the posterior nucleus and the ventroposterior complex, in the zona incerta and in the fields of Forel, but none were observed in the supraoptic or paraventricular nuclei. Injections made in the area of the lateral cervical nucleus and in the cuneate and gracile nuclei labelled fibres and "terminal-like" fields in the external nucleus of the inferior colliculus, the intercollicular area, the deep grey layers of the superior colliculus and in the mesencephalic lateral tegmentum. After injections in the posterior nucleus and ventroposterior complex of the thalamus, retrogradely labelled cells were found in the lateral tegmentum, the intercollicular area and the external nucleus of the inferior colliculus. These results indicate that bilateral lesioning of the mesencephalic lateral tegmentum, which disrupts the milk-ejection response, could damage somatosensory projections originating from the dorsal horn of the spinal cord, the lateral cervical nucleus, the dorsal column nuclei and the sensory and spinal trigeminal nuclei.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号