首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The organization of the cerebellar corticonuclear projections, i.e., the projections from the Purkinje cell layer to the cerebellar nuclei and the vestibular nuclear complex, was investigated with the horseradish peroxidase (HRP) technique in the lizard Varanus exanthematicus. After HRP slow-release gels were implanted in the cerebellar nuclei or various parts of the vestibular nuclear complex, the following longitudinally oriented zones of labeled Purkinje cells could be distinguished: a medial zone projecting to the medial cerebellar nucleus; an intermediate zone projecting to the vestibular nuclear complex, especially the ventrolateral vestibular nucleus, but probably also the dorsolateral vestibular nucleus; a caudolaterally located area of the cerebellar cortex projecting to the lateral cerebellar nucleus; and the flocculus and the adjacent lateral part of the Purkinje cell layer with projections to the middle and caudal parts of the vestibular nuclear complex, i.e., the descending and ventromedial vestibular nuclei. All projections of the Purkinje cells appeared to be strictly ipsilateral. It can be concluded that in reptiles a longitudinal organization of cerebellar corticonuclear projections exists, which may be basic for terrestrial vertebrates.  相似文献   

2.
Cerebellar projections to the superior colliculus in the rabbit were studied by the anterograde and retrograde HRP methods. Cerebellotectal fibers arise mainly from the anterior and posterior interpositus nuclei and terminate contralaterally in layer VII, layer VI, layer V, and the deep tier of layer IV of the superior colliculus. Cerebellotectal fibers from the posterior interpositus nucleus originate from the lateral part of the nucleus and end chiefly in the caudal part of the superior colliculus. Cerebellotectal fibers from the anterior interpositus nucleus arise from the ventral part of the nucleus and terminate mainly in the rostromedial part of the superior colliculus. Some neurons in the lateral cerebellar nucleus also send fibers contralaterally to the intermediate and deep layers of the superior colliculus, especially to its rostral and lateral parts. Few, if any, cerebellotectal fibers arise from the medial cerebellar nucleus.  相似文献   

3.
In order to describe the central relations of both the afferent and efferent components of the VIIIth cranial nerve in one reptile, the methods of anterograde and retrograde axonal transport and anterograde degeneration were used to study the vestibular and cochlear projections and the efferent system of this nerve in Varanus exanthematicus. On the basis of cresyl violet and Klüver-Barrera staining, five vestibular nuclei, four cochlear nuclei, and two clusters of small cells which could not be designated as strictly auditory or vestibular are distinguished. The vestibular nuclei include the nucleus dorsolateralis, nucleus ventrolateralis, nucleus tangentialis, nucleus ventromedialis, and nucleus descendens. The well-developed cochlear nuclear complex includes the nucleus angularis, nuclei magnocellulares medialis and lateralis, and nucleus laminaris. The two cell clusters are located dorsolaterally in the brainstem just ventrolateral to the acoustic tubercle. The primary afferent vestibular fibers coursing in the anterior VIIIth nerve root distribute to the ventral portions of all vestibular nuclei except nucleus ventromedialis, whereas the fibers coursing in the posterior root project to the dorsal portions of these nuclei. In nucleus ventromedialis fibers of both roots do not segregate into ventral and dorsal portions. Other targets of the vestibular fibers are the two cell clusters, the granular layer of the ipsilateral cerebellum, the reticular formation, and the descending trigeminal tract and its nucleus. The primary cochlear fibers coursing in the posterior root terminate in nucleus angularis, nuclei magnocellulares medialis and lateralis, and the inner cell strand of nucleus laminaris. The efferent system is, ipsi- and contralaterally in the brainstem, composed of ventral and dorsal cell groups that extend from the level of the principal abducens nucleus caudally where they overlap with the facial motor nucleus. The fibers, which originate from the contralaterally located efferent cells, course beneath the IVth ventricle to exit the brainstem on the ipsilateral side.  相似文献   

4.
5.
Attempts were made to determine brainstem and cerebellar afferent and efferent projections of the superior vestibular nucleus (SVN) and cell group 'y' ('y') in the cat using axoplasmic tracers. Injections of HRP, WGA-HRP and [3H]amino acids were made into SVN and 'y' using two different infratentorial stereotaxic approaches. Controls were provided by unilateral HRP injections involving the oculomotor nuclear complex (OMC), the interstitial nucleus of Cajal (INC) and the deep cerebellar nuclei (DCN). Large injections of SVN almost invariably involved 'y' and dorsal parts of the lateral vestibular nucleus (LVN). Smaller injections involved central and ventral peripheral parts of SVN. Discrete injections of 'y' involved small dorsal parts of LVN. Afferents to SVN are derived mainly from the vestibular nuclei (VN) and parts of the vestibulocerebellum. SVN receives afferents: bilaterally from caudal portions of the medial (MVN) and inferior (IVN) vestibular nuclei and 'y'; contralaterally from ventral and lateral parts of SVN and rostral MVN; and ipsilaterally from the nodulus, uvula and medial parts of the flocculus. Purkinje cells (PC) in medial parts of the flocculus project to central regions of SVN, while PC in the nodulus and uvula appear to project mainly to dorsal peripheral regions of SVN. SVN receives sparse projections from the ipsilateral INC, the contralateral central cervical nucleus (CCN) and virtually no projections from the reticular formation. SVN projects via the medial longitudinal fasciculus (MLF) to the ipsilateral trochlear nucleus (TN), the inferior rectus subdivision of the OMC, the INC, the nucleus of Darkschewitsch (ND) and the rostral interstitial nucleus of the MLF (RiMLF). Contralateral projections of SVN cross in the ventral tegmentum caudal to most of the decussating fibers of the superior cerebellar peduncle and terminate in the dorsal rim of the TN and the superior rectus and inferior oblique subdivisions of the OMC; sparse crossed projections enter the INC and the ND. Cerebellar projections of SVN end as mossy fibers in the ipsilateral nodulus, uvula and in medial parts of the flocculus bilaterally. Retrograde transport from unilateral injections of the OMC indicate that afferents from SVN arise ipsilaterally from central and dorsal regions and contralaterally from dorsal peripheral regions. Ventral cell group 'y' receives small numbers of afferent fibers from caudal central parts of the ipsilateral flocculus. No fibers from ventral 'y' could be traced to other vestibular nuclei, the OMC or the cerebellum.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Following minor concussive brain injury when there is an otherwise general suppression of CNS activity, the ventral tegmental nucleus of Gudden (VTN) demonstrates increased functional activity (32). Electrical or pharmacological activation of a cholinoceptive region in this same general area of the medial pontine tegmentum contributes to certain components of reversible traumatic unconsciousness, including postural atonia (31, 32, 45). Therefore, in an effort to examine the neuroanatomical basis of the behavioral suppression associated with a reversible traumatic unconsciousness, the afferent and efferent connections of the VTN and putative cholinoceptive medial pontine reticular formation (cmPRF) were studied in the cat using the retrograde horseradish peroxidase (HRP), HRP/choline acetyltransferase (ChAT) double-labeling immunohistochemistry, and anterograde HRP and autoradiographic techniques. Based upon retrograde HRP labeling, the principal afferents to the VTN region of the cmPRF originated from the medial and lateral mammillary nuclei, and lateral habenular nucleus, and to a lesser extent from the interpeduncular nucleus, lateral hypothalamus, dorsal tegmental nucleus, superior central nucleus, and contralateral nucleus reticularis pontis caudalis. Other afferents, which were thought to have been labeled through spread of HRP into the medial longitudinal fasciculus (MLF), adjacent paramedian pontine reticular formation, or uptake by transected fibers descending to the inferior olive, included the nucleus of Darkschewitsch, interstitial nucleus of Cajal, zona incerta, prerubral fields of Forel, deep superior colliculus, nucleus of the posterior commissure, nucleus cuneiformis, ventral periaqueductal gray, vestibular complex, perihypoglossal complex, and deep cerebellar nuclei. In HRP/ChAT double labeling studies, only a very small number of cholinergic VTN afferent neurons were found in the medial parabrachial region of the dorsolateral pontine tegmentum, although the pedunculopontine and laterodorsal tegmental nuclei contained numerous single-labeled ChAT-positive cells. Anterograde HRP and autoradiographic findings demonstrated that the VTN gave rise almost exclusively to ascending projections, which largely followed the course of the mammillary peduncle (16,21) and medial forebrain bundle, or the tegmentopeduncular tract (4). The majority of fibers ascended to terminate in the medial and lateral mammillary nuclei, interpeduncular complex (especially paramedian subnucleus), ventral tegmental area, lateral hypothalamus, and the medial septum in the basal forebrain. Labeling that joined the mammillothalamic tract to terminate in the anterior nuclear complex of the thalamus was thought to occur transneuronally. Some projections were also observed to nucleus reticularis pontis oralis and caudalis, superior central nucleus, and dorsal tegmental nucleus adjacent to the VTN...  相似文献   

7.
The motor nuclei of the oculomotor, trochlear, and abducens nerves of the reptile Varanus exanthematicus and the neurons that subserve the sensory innervation of the extraocular muscles were identified and localized by retrograde and anterograde transport of horseradish peroxidase (HRP). The highly differentiated oculomotor nuclear complex, located dorsomedially in the tegmentum of the midbrain, consists of the accessory oculomotor nucleus and the dorsomedial, dorsolateral, intermediate, and ventral subnuclei. The accessory oculomotor nucleus projects ipsilaterally to the ciliary ganglion. The dorsomedial, dorsolateral, and intermediate subnuclei distribute their axons to the ipsilateral orbit, whereas the ventral subnucleus, which innervates the superior rectus muscle, has a bilateral, though predominantly contralateral projection. The trochlear nucleus, which rostrally overlaps the oculomotor nuclear complex, is for the greater part a comma-shaped cell group situated lateral, dorsal, and medial to the medial longitudinal fasciculus. Following HRP application to the trochlear nerve, almost all retrogradely labeled cells were found in the contralateral nucleus. The nuclear complex of the abducens nerve consists of the principal and accessory abducens nuclei, both of which project ipsilaterally. The principal abducens nucleus is located just beneath the fourth ventricle laterally adjacent to the medial longitudinal fasciculus and innervates the posterior rectus muscle. The accessory abducens nucleus has a ventrolateral position in the brainstem in close approximation to the ophthalmic fibers of the descending trigeminal tract. It innervates the retractor bulbi and bursalis muscles. The fibers arising in the accessory abducens muscles form a loop in or just beneath the principal abducens nucleus before they join the abducens nerve root. The afferent fibers conveying sensory information from the extraocular muscles course in the oculomotor nerve and have their perikarya in the ipsilateral trigeminal ganglion, almost exclusively in its ophthalmic portion.  相似文献   

8.
Shinji Nagata   《Brain research》1986,376(1):57-70
The vestibulothalamic connections were studied in the rat using wheat germ agglutinin-horseradish peroxidase (WGA-HRP). The distributions of anterograde labelling of fibers and terminals in the brainstem and the thalamus were analyzed by injecting WGA-HRP into the superior (SVN) and lateral (LVN) vestibular nuclei, and the medial (MVN) and inferior (IVN) vestibular nuclei. The distributions of retrograde labelling of cells were analyzed in the vestibular nuclear complex by injecting WGA-HRP into the thalamus centered in the central lateral nucleus (CL), ventral posterolateral nucleus (VPL), and rostral part of the dorsal medial geniculate nucleus (rMGd). The vestibular projection to the CL via the medial longitudinal fasciculus (MLF) and the ascending tract of Deiters (ATD) originates mainly in the contralateral MVN and ipsilateral SVN. The vestibular projections to the VPL and the ventral lateral nucleus (VL) via MLF, ATD and superior cerebellar peduncle (SCP) originate mainly in the MVN and SVN, bilaterally. The projection to the rMGd via the lateral lemniscus-inferior collicular brachium, and MLF (and SCP) originates in the contralateral IVN.  相似文献   

9.
The connections of the cerebellar cortex with vestibular premotor neurons of the oculomotor and collimotor systems in the pigeon were delineated in experiments using WGA-HRP as an anterograde and retrograde tracer. Putative premotor neuron pools were identified by injections into the oculomotor (mIII) and trochlear nuclei (mIV) and into the most rostral portion of the cervical neck motor nucleus, nucleus supraspinalis (SSp). The retrograde data indicate that ipsilateral projections upon oculomotor neurons arise from the medial portions of the superior (VeS) and tangential (Ta) nuclei. Contralateral projections originate from the infracerebellar nucleus, the interstitial vestibular region including the main (lateral) portion of the tangential nucleus, and from the descending and medial vestibular nuclei (VeD, VeM). These projections were confirmed in anterograde studies that also defined the connections of these vestibular premotor regions with specific subnuclear divisions of the pigeon's "oculomotor" nuclei (mIII, mIV, mVI). The organization of projections from the vestibular nuclei to the pigeon's extraocular motoneurons is similar to that reported in mammals. Projections upon neck premotor neurons arise primarily from neurons in the interstitial region of the vestibular nuclear complex. After injections in SSp, retrogradely labeled neurons were found, contralaterally, in the lateral part of the tangential and superior vestibular nuclei and in the dorsolateral vestibular nucleus (VDL). Ipsilateral labeling was seen in the medial interstitial region (VeM, VeD, and medial Ta). These projections were confirmed in anterograde experiments. With the exception of VDL, vestibular nuclei projecting to neck motoneurons also project to extraocular motoneurons. Thus the infracerebellar nucleus projects exclusively, and the superior vestibular nucleus predominantly, upon oculomotor (mIII, mIV) nuclei; VDL projects predominantly upon the neck motor nucleus, whereas the interstitial vestibular regions (medial Ta, rostral VeD, intermediate VeM) project upon both collimotor and oculomotor neurons. The pattern of retrograde labeling seen in the cerebellar cortex after injections into vestibular premotor nuclei was used to define the projections of specific cerebellar cortical zones upon vestibular eye and neck premotor neurons. Corticovestibular projections upon these regions arise from the auricle and lateral unfoliated cortex, the posterior lobe components of cortical zones B and E, and from the vestibulocerebellum. Each of these cortical zones projects upon components of the vestibular nuclear complex, which are premotor to either oculomotor nuclei or collimotor nuclei. The hodological findings are related to the functional organization of the oculomotor and collimotor systems in the pigeon and compared with the mammalian data.  相似文献   

10.
Because fastigial efferent fibers partially decussate within the cerebellum and cerebellar corticovestibular projections pass near, or through, the fastigial nucleus (FN), degeneration studies based on lesions in the nucleus leave unresolved questions concerning fastigial projections. Attempts were made to determine fastigial projections in the monkey using autoradiographic tracing technics. Cells in rostral, caudal and all parts of the FN were labeled with [3H] amino acids. Selective labeling of neurons in either rostral or caudal parts of the FN results in transport of isotope primarily via fibers of the contralateral uncinate fasciculus (UF) and the ipsilateral juxtarestiform body (JRB). Fastigial projections to the vestibular nuclei are mainly to ventral portions of the lateral (LVN) and inferior (IVN) vestibular nuclei, are nearly symmetrical and are quantitatively similar on each side. Fastigiovestibular projections to cell groups f and x arise from all parts of the FN and are mainly crossed; modest projections to the medial vestibular nucleus are uncrossed. No fastigial efferent fibers end in the superior vestibular nucleus on either side, or in dorsal regions of the LVN. Crossed fibers descending in IVN terminate in the nucleus parasolitarius. Fastigioreticular fibers arise predominately from rostral regions of the FN, are entirely crossed and project mainly to: (1) medial regions of the nucleus reticularis gigantocellularis, (2) the dorsal paramedian reticular nucleus and (3) the magnocellular part of the lateral reticular nucleus. Fastigiopontine fibers, emerge with the UF, bypass the vestibular nuclei and terminate upon the contralateral dorsolateral pontine nuclei. Crossed fastigiospinal fibers separate from fastigiopontine fibers and descend in the ventrolateral tegmentum beneath the spinal trigeminal tract; in the medulla and upper cervical spinal cord these fibers are intermingled with those of the vestibulospinal tract. Fastigiospinal fibers terminate in the anterior gray horn at C-1 and probably descend further. Ascending fastigial projections arise from caudal parts of the FN, are entirely crossed and ascend in dorsal parts of the midbrain tegmentum. Label is transported bilaterally to the superior colliculi and the nuclei of the posterior commissure. Contralateral fastigiothalamic projections terminate in the ventral posterolateral (VPLc and VPLo) and in parts of the ventral lateral (VLo) thalamic nuclei. The major region of termination of fastigiothalamic fibers is in VPLo. Fastigiothalamic projections, probably conveying impulses concerned with equilibrium and somatic proprioception, appear to impinge upon thalamic neurons receiving inputs from less specialized receptors that signal information concerning position sense and body movement. More modest fastigial projections to VLo could directly influence activity of neurons in the primary motor cortex.  相似文献   

11.
The projections of the medial terminal nucleus (MTN) of the accessory optic system have been studied in the rabbit and rat following injection of 3H-leucine or 3H-leucine/3H-proline into the MTN and the charting of the course and terminal distribution of the MTN efferents. The projections of the MTN, as demonstrated autoradiographically, have been confirmed in retrograde transport studies in which horseradish peroxidase (HRP) has been injected into nuclei shown in the autoradiographic series to contain fields of terminal axons. The following projections of the MTN have been identified in the rabbit and rat. The largest projection is to the ipsilateral nucleus of the optic tract and dorsal terminal nucleus (DTN) of the accessory optic system. Labeled axons course through the midbrain reticular formation and the superior fasiculus, posterior fibers of the accessory optic system, to reach the nucleus of the optic tract and the DTN in both rabbit and rat. Axons also run forward to traverse the lateral thalamus and to distribute to rostral portions of the nucleus of the optic tract in rat only. A second, large projection is to the contralateral dorsolateral portion of the nucleus parabrachialis pigmentosus of the ventral tegmental area together with an adjacent segment of the midbrain reticular formation. The patchy terminal field observed has been named the visual tegmental relay zone (VTRZ). This fiber projection courses within the posterior commissure and along its path to the VTRZ, provides terminals to the interstitial nucleus of Cajal and the nucleus of Darkschewitsch, both bilaterally. A third, large MTN projection distributes ipsilaterally to the deep mesencephalic nucleus, pars medialis, and the oral pontine reticular formation. Further, this projection also supplies input to the medial nucleus of the periaqueductal gray matter, bilaterally in the rabbit and rat, and in the rabbit also to the ipsilateral superior and lateral vestibular nuclei. A fourth projection crosses the midline and courses caudally to reach, contralaterally, the dorsolateral division of the basilar pontine complex and the above nuclei of the vestibular complex. A fifth projection of the MTN utilizes the medial longitudinal fasciiculus to reach the rostral medulla, in which its axons distribute ispilaterally to the dorsal cap, its ventrolateral outgrowth, and the beta nucleus of the inferior olivary complex. There is also a contralateral contingent of this projection that leaves the medial longitudinal fasciculus to innervate a small rostral segment of the contralateral dorsal cap.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
The connections of the lateral terminal nucleus (LTN) of the accessory optic system (AOS) of the marmoset monkey were studied with anterograde 3H-amino acid light autoradiography and horseradish peroxidase retrograde labeling techniques. Results show a first and largest LTN projection to the pretectal and AOS nuclei including the ipsilateral nucleus of the optic tract, dorsal terminal nucleus, and interstitial nucleus of the superior fasciculus (posterior fibers); smaller contralateral projections are to the olivary pretectal nucleus, dorsal terminal nucleus, and LTN. A second, mejor bundle produces moderate-to-heavy labeling in all ipsilateral, accessory oculornotor nuclei (nucleus of posterior commissure, interstitial nucleus of Cajal, nucleus of Darkschewitsch) and nucleus of Bechterew; some of the fibers are distributed above the caudal oculomotor complex within the supraoculornotor periaqueductal gray. A third projection is ipsilateral to the pontine and mesencephalic reticular formations, nucleus reticularis tegmenti pontis and basilar pontine complex (dorsolateral nucleus only), dorsal parts of the medial terminal accessory optic nucleus, ventral tegmental area of Tsai, and rostral interstitial nucleus of the medial longitudinal fasciculus. Lastly, there are two long descending bundles: (1) one travels within the medial longitudinal fasciculus to terminate in the dorsal cap (ipsilateral > > contralateral) and medial accessory olive (ipsilateral only) of the inferior olivary complex. (2) The second soon splits, sending axons within the ipsilateral and contralateral brachium conjunctivum and is distributed to the superior and medial vestibular nuclei. The present findings are in general agreement with the documented connections of LTN with brainstem oculomotor centers in other species. In addition, there are unique connections in marmoset monkey that may have developed to serve the more complex oculomotor behavior of nonhuman primates. © 1995 Wiley-Liss, Inc.  相似文献   

13.
Efferent projections from the lateral reticular nucleus in the rat were investigated with anterograde transport of Phaseolus vulgaris leucoagglutinin. Besides the well known mossy fibre connections to the cerebellar cortex and collaterals to the cerebellar nuclei, a substantial bilateral projection to the lateral vestibular nucleus was found. Terminal arborizations found within this nucleus appeared to detach from the reticulocerebellar fibres in the cerebellar white matter and enter the lateral vestibular nucleus from dorsally. This projection may have functional relevance for the control, by ascending spinal pathways, of the descending lateral vestibulospinal tract.  相似文献   

14.
The projections of the cerebellar cortex upon the cerebellar nuclei and the vestibular complex of the pigeon have been delineated using WGA-HRP as an anterograde and retrograde tracer. Injections into individual cortical lobules (II-IXa) produce a pattern of ipsilateral terminal labeling of both the cerebellar and vestibular nuclei. The pattern of corticonuclear projections indicates both a rostrocaudal and a mediolateral organization with respect to the lobules and is consistent with a division of the cerebellar nuclei into a medial (CbM) and a lateral (CbL) nucleus. The retrograde experiments indicate that these nuclei receive projections, respectively, from Purkinje cells within medial (A) and lateral (C) longitudinal zones, which alternate with longitudinal zones (B, E) projecting upon the vestibular complex. Purkinje cells in (vestibulocerebellar) lobules IXb-X show only limited projections upon the cerebellar nuclei, but do project extensively upon the cerebellovestibular process (PCV), as well as upon the medial, superior, and descending vestibular nuclei. As the injection site shifts from medial to lateral, there is a corresponding shift in focus of the projection within PCV from areas bordering CbM to those abutting CbL. The topographic organization of corticovestibular projections is less clear-cut than those of the corticonuclear projections. Lobules II-X project upon the lateral vestibular nucleus (anterior lobe) or the dorsolateral vestibular nucleus (posterior lobe). These projections originate from either side of the lateral (C) zone. Projections originating from the medialmost (B) zone are interrupted in lobules VI and VII. The anterior and posterior portions of the lateralmost (E) zone overlap along lobules VI and VII. In addition, the E zone of the anterior lobe is the source of projections upon the medial, the descending, and the superior vestibular nuclei. Projections from the auricle and adjacent lateral unfoliated cortex (F zone) focus upon the infracerebellar nucleus, the medial tangential nucleus, and the medial division of the superior vestibular nucleus. The data suggest that the cerebellar cortex of the pigeon, like that of mammals, may be subdivided into a mediolaterally oriented series of longitudinal zones, with Purkinje cells in each zone projecting ipsilaterally to specific cerebellar nuclei or vestibular regions. For cortical regions exclusive of the auricle and lateral unfoliated cortex, three such zones (A, B, and C) are defined that are comparable in their efferent targets with the A, B, and C zones of mammals. There does not appear to be a D zone in the pigeon. The results are discussed in relation to comparative data on amphibians, reptiles, and mammals.  相似文献   

15.
The terminal sites of floccular efferent fibers were investigated in the albino rat by an autoradiographic orthograde method. The corticonuclear fibers terminated in the caudoventral part of the lateral cerebellar nucleus and in the caudoventral region of the lateral part of the posterior interpositus nucleus. A few fibers from the rostral flocculus terminated in the granular cell layer of the basolateral part of the nodulus and uvula as mossy fiber type terminals. The projection to the nodulus and uvula was confirmed, by an additional retrograde HRP study, to originate from scattered spindle-shaped cells in the floccular stalk. The corticovestibular fibers terminated massively in the subnucleus y. The fibers passing through the subnucleus y divided into two bundles; one bundle coursed rostrally to terminate in the lateral and ventral parts of the superior vestibular nucleus, while the other bundle passed through the lateral and then ventral parts of the lateral vestibular nucleus, supplying a few terminals to these regions, to terminate sparsely in the rostral to intermediate part of the medial vestibular nucleus and the rostroventral part of the spinal vestibular nucleus. Some fibers passing through the lateral vestibular nucleus coursed rostrally to terminate in the medial part of the superior vestibular nucleus. Sparse terminals derived from the rostral flocculus were found in the prepositus hypoglossal nucleus. No definitive differential efferent projections were demonstrated in the rat flocculus.  相似文献   

16.
We have demonstrated the connectivity of the opossum's vestibular nuclei using degeneration, autoradiographic and horseradish peroxidase techniques and have found it to be generally comparable to that reported for the cat. Apart from the primary input described in Part I of our study, the cerebellum provides the major source of afferent connections to the vestibular complex. Axons from the cerebellar cortex distribute mainly to vestibular areas which receive no primary afferent projections, e.g., the dorsal part of the lateral vestibular nucleus, the dorsolateral margin of the inferior vestibular nucleus as well as cell groups comparable to "f" and "x." In contrast, fastigial fibers show considerable overlap with primary vestibular input, particularly in the ventral part of the lateral nucleus, the central part of the inferior nucleus and the medial nucleus. Axons of fastigial origin also distribute to the superior vestibular nucleus, to subnuclei "f" and "x" and to the parasolitary region. Although spinal fibers are diffuse within the main vestibular nuclei, they ramify quite densely within subnucleus "x." Most of the spinovestibular projection appears to arise in the cervical spinal cord of the opossum. Ipsilateral connections from the interstitial nucleus of Cajal and surrounding areas end predominantly, but not exclusively, in the medial vestibular nucleus. A crossed midbrain projection has been verified from the red nucleus to cell group "x" and the lateral part of the inferior nucleus, as well as to an area possibly comparable to cell group "z," as described for the cat. In Part I of our study we have shown that the major targets of primary vestibular fibers are the central part of the superior nucleus, a portion of the parabrachial complex possibly comparable to subnucleus "y"," the ventral part of the lateral nucleus and the medial nucleus. All of these primary zones give rise to fibers supplying extraocular nuclei and surrounding areas (present study). The ascending midbrain fibers from the superior nucleus end mainly ipsilaterally, whereas those from the putative subnucleus "y" and the medial vestibular nucleus distribute contralaterally for the most part. Although the dorsal part of the lateral vestibular nucleus has no primary vestibular input, it does receive a major projection from the cerebellar cortex. This same region of the lateral nucleus projects to the spinal cord, but not to extraocular nuclei. The ventral part of the lateral nucleus, and perhaps the medial nucleus, also relay to the spinal cord. Additional projections from all vestibular nuclei to the reticular formation provide indirect routes through which the vestibular nuclei can potentially effect multiple systems, including those innervating the spinal cord. Finally, commissural vestibular connections of the opossum are shown to arise within all four major nuclei.  相似文献   

17.
The projections of the deep cerebellar nuclei in the pigeon have been delineated using autoradiographic and histochemical (WGA-HRP) tracing techniques. A medial (CbM) and lateral (CbL) cerebellar nucleus are recognized and CbM may be further partitioned into internal, intermediate, and intercalate divisions. As in mammals, most extracerebellar projections of CbM travel in the fasciculus uncinatus (FU); the rest travel with those of CbL in the brachium conjunctivum (BC). In the pigeon, both of these pathways are bilaterally but primarily contralaterally projecting systems. FU is a predominantly descending tract, with terminations within (1) the vestibular complex, (2) a column of contiguous medial reticular nuclei from pontine to caudal medullary levels; (3) the plexus of Horsley portion of the parvicellular reticular formation, continuing through the nucleus centralis medullae oblongatae, pars dorsalis, into intermediate layer VII of the cervical spinal cord, down to cervical segment 8-9; (4) the lateral reticular nucleus and the paragigantocellular reticular nucleus; (5) the dorsal lamella of the inferior olive. Rostrally FU terminals are found in the locus ceruleus and dorsal subcerulean nucleus. Minimal FU projections are also seen to the motor trigeminal nucleus and the subnucleus oralis of the descending trigeminal system. A small projection from the intercalate division of CbM travels in BC and projects upon the midbrain central grey, the intercollicular nucleus, the lateral tectal periventricular grey, the stratum cellulare externum and, sparsely, upon the dorsolateral thalamus. The bulk of BC originates from the lateral cerebellar nucleus and consists of a massive ascending and a small descending branch. The ascending system projects upon the red nucleus and the dorsally adjacent interstitial nucleus of Cajal and midbrain central grey, the prerubral fields continuing into the stratum cellulare externum, the nucleus intercalatus thalami, the ventrolateral thalamic nucleus, the medial spiriform nucleus, the nucleus principalis precommissuralis, the nucleus of the basal optic root, the nucleus geniculatus lateralis pars ventralis, the dorsolateral thalamus, including the dorsal intermediate posterior, and the dorsolateral intermediate and anterior nuclei. BC also contains axons from the infracerebellar nucleus, which projects upon the trochlear and the oculomotor nuclei. The descending branch of BC distributes to the papilioform nucleus, the medial pontine nucleus, the gigantocellular and paramedian reticular nuclei, and, minimally, the rostral portions of the medial column and ventral lamella of the inferior olive. Taken in conjunction with data on amphibia and reptiles the present findings suggest that the fundamental ground plan of vertebrate cerebellar organization involves a medial and lateral cerebellar nucleus.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Horseradish peroxidase and cobaltous lysine tracers are used to determine the afferent and efferent projections of the vestibulolateral cerebellum (VLL) in the little skate, Raja erinacea. The skate VLL has separate divisions, pars medialis and pars lateralis, associated with vestibular and lateralis modalities, respectively. The pars medialis has a typical cerebellar structure with molecular and Purkinje cell layers and granular areas. In addition to known inputs from eighth nerve vestibular fibers and limited mechanosensory lateralis afferents, pars medialis afferents are from the ventral part of the descending octaval nucleus, the lateral funicular nucleus and nucleus of the medial longitudinal fasciculus. The pars lateralis and rostral anterior octaval nucleus may be additional afferent sources. Pars medialis efferents project to ventral descending and anterior octaval nuclei, as mossy fibers to the cerebellar corpus and as parallel fibers in the ventrolateral extreme of the molecular layer in the medial octavolateralis nucleus. The pars lateralis comprises granule and Golgi cells and is subdivided into a dorsal granular ridge (DGR) and lateral granular area (LG) that are the sources of parallel fibers in the molecular layers of the dorsal (electrosensory) and medial (mechanosensory) octavolateralis nuclei. Local injections of tracer reveal a systematic topography of pars lateralis parallel fiber projections and a mossy fiber projection to the corpus. Both DGR and LG receive direct spinal input but afferent sources to DGR and LG are otherwise distinct. While LG is known to receive mechanosensory lateralis afferents and limited eighth nerve fibers, DGR receives no direct cranial nerve input. Additional afferents to LG are predominantly from contralateral LG and the anterior octaval and lateral funicular nuclei. Additional DGR afferents are from three medullary nuclei beneath the cerebellar peduncle, nuclei F and K and paralemniscal nucleus, which also projects directly to the dorsal nucleus. Distinct inputs to DGR and LG suggest different contributions of VLL to medullary processing in electro- and mechanoreception.  相似文献   

19.
The projection of the vestibular nuclei to the inferior olive was investigated by means of anterograde transport of tritiated leucine. Following injections in the medial and descending vestibular nuclei, terminal labeling was found ipsilaterally in the dorsomedial cell column, subnucleus beta and the caudal medial accessory olive, while the latter also received afferents from the nucleus prepositus hypoglossi. At the contralateral side termination in the dorsomedial cell column and the medial accessory olive was found after injections in the nucleus vestibularis superior and group Y. The ventrolateral outgrowth and different parts of the principal olive also received afferents from these two nuclei and also from ventral parts of the lateral cerebellar nucleus. The dorsal cap was labeled exclusively from the contralateral nucleus prepositus hypoglossi. The termination in the inferior olive of the vestibular afferents is compared with the projection from a number of pretectal nuclei. Furthermore the consequences of the divergence and convergence of both types of projections at the level of the inferior olive is discussed in relation to the subsequent climbing fiber projection to the flocculus.  相似文献   

20.
The origin, course and distribution of cerebellopontine fibers was studied in the opossum by employing the Nauta-Gygax and Fink-Heimer techniques. Our results substantiate and extnd those of Brodal, Destombes, Lacerda and Angaut ('72) concerning the existence of cerebellopontine projections and provide evidence for a hitherto unreported fastigial projection to the basilar pons. Destruction of the caudal, medial division of the fastigial nucleus elicits bilateral degeneration in a restricted area of the medial pontine nucleus. This small terminal field is located in the angle between the medial lemniscus and the pyramidal tract and is found throughout the caudal three-fifths of the pons. The degenerating fibers do not course within the descending brachium conjunctivum, but reach the pons by filtering through the reticular formation from the uncinate fasciculus. Lesions that involve either the interpositus anterior or the dentate nucleus produce degeneration within the contralateral descending brachium conjunctivum and basilar pons. Terminal fields are located within the median, medial (paramedian nucleus of cat), peduncular, ventral and lateral nuclei. The heaviest degeneration is in the medial nucleus. Although cerebellar and cortical projections have different targets in the basilar pons, there is some overlap. Fastigial and preorbital fibers have partial overlap in the dorsal part of the medial nucleus, whereas the peduncular and lateral nuclei are the areas of overlap between the interpositus anterior and dentate projections with those from forelimb (and probably face) cortical areas. This overlap is particularly obvious in the caudal part of the lateral nucleus and occurs between fibers from limb motor-sensory cortex and those arising mainly within the anterior interpositus nucleus. There is no pontine overlap between cerebellar and visual or auditory cortical projections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号