首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Histamine is found in neurons and their long projections in the mammalian brain. The mammalian histaminergic system consists of nerve cell bodies in the tuberomammillary nucleus, and extensive, crossing projections to various brain areas. In addition to the tuberomammillary histaminergic system, histamine is found in rhombencephalic neurons during fetal development of rat. To investigate if histamine has a function in growth and regeneration of the nervous system, small injections of kainic acid were made into different parts of the rat brain.Histamine-immunoreactive nerve fibers were seen in and around the lesions 2 to 15 weeks after the injection. The density of these fibers was higher than that of the control side. The results suggest that histamine is either accumulated in pre-existing fibers or that sprouting of histamine-containing nerves is induced by the lesions.The newly establishedin situ hybridization method for the enzyme histidine decarboxylase may reveal possible dynamic changes in enzyme regulation associated with the lesions.  相似文献   

2.
Histamine-immunoreactive nerve fibers in the rat brain   总被引:12,自引:0,他引:12  
A new immunohistochemical method that utilizes carbodiimide as a tissue fixative was applied to study the distribution of histamine-immunoreactive neuronal fibers and terminals in the rat brain. Immunoreactive fibers were observed in almost all major regions of the brain. They were most numerous in the different hypothalamic nuclei. Dense networks of immunoreactive fibers were also seen in the medial septum, nucleus of the diagonal band and ventral tegmental area. A moderate density of fibers was seen throughout the cerebral cortex, in some parts of the olfactory bulb and tubercle, bed nucleus of the stria terminalis, amygdala, basal parts of the hippocampus, inferior and superior colliculi, substantia nigra, lateral and medial parabrachial nucleus, and the nucleus of the solitary tract. Few histamine-immunoreactive fibers were seen in most parts of the caudate putamen, most thalamic nuclei, most pontine and ventral medullary nuclei. Histamine-immunoreactive neuronal cell bodies were found exclusively in the tuberomammillary nucleus, in agreement with previous reports. The results provide evidence for a widespread distribution of histamine-containing nerve fibers and terminals in the rat brain. Although immunohistochemical localization of histamine does not give direct evidence of a functional role of histamine in any brain area, this distribution suggests involvement in functions of the limbic system including the septal nuclei, hypothalamus and amygdala. The relatively dense histamine-immunoreactive fiber networks in the colliculi and dorsal cochlear nucleus indicate that this amine may play a role in visual functions and hearing. The paucity of immunoreactive fibers in the pontine and medullary areas suggests that the caudal projections originating from the tuberomammillary complex are minor ones compared to the major rostral projections. Several fiber projections originating from the tuberomammillary complex could be deduced from serial frontal, sagittal and horizontal sections. They contained fibers that crossed the midline at several levels of the brain. The results provide information on the target areas of the histaminergic neurons and form a basis for the examination of cellular contracts between the histaminergic neurons and other cells.  相似文献   

3.
L-Histidine decarboxylase catalyzes the formation of histamine from the amino acid L-histidine. We have studied the distribution of neurons expressing mRNA for histidine decarboxylase in adult rat brain using in situ hybridization with synthetic oligonucleotide probes. The expression of mRNA for histidine decarboxylase was detected in the hypothalamic tuberomammillary nucleus that has been shown to contain histidine decarboxylase-like and histamine-like immunoreactivity, but not in any other brain area. This method may prove useful in studying the physiological role of central histaminergic neurons.  相似文献   

4.
5.
Effects of carnosine on amygdaloid-kindled seizures in Sprague-Dawley rats   总被引:7,自引:0,他引:7  
Jin CL  Yang LX  Wu XH  Li Q  Ding MP  Fan YY  Zhang WP  Luo JH  Chen Z 《Neuroscience》2005,135(3):939-947
The effects of carnosine (beta-alanyl-L-histidine) on amygdaloid-kindled seizures were investigated in rats. I.p. injection of carnosine (500, 1000, 1500 mg/kg, i.p.) significantly decreased seizure stage, afterdischarge duration and generalized seizure duration, and significantly prolonged generalized seizure latency of amygdaloid-kindled seizures, in a dose-dependent, and time-related manner. The protective effect of carnosine (1500 mg/kg) was completely antagonized by histamine H1-antagonists pyrilamine (2, 5 mg/kg, i.p.) and diphenhydramine (5, 10 mg/kg, i.p.), but not by histamine H2-antagonist zolantidine even at a high dose of 10 mg/kg. Carnosine (1500 mg/kg, i.p.) caused a significant increase of carnosine and histidine levels in the hypothalamus, thalamus, hippocampus, amygdala and cortex, as well as histamine levels in the hippocampus and amygdala. I.c.v. injection of alpha-fluoromethylhistidine (50 microg, i.c.v.), a selective and irreversible histidine decarboxylase inhibitor, only partially reversed the inhibition of amygdaloid-kindled seizures induced by carnosine. In addition, carnosine significantly decreased glutamate contents in the amygdala and hippocampus. These results indicate that carnosine could protect against amygdaloid-kindled seizures in rats, and its action may be due to the activation of histamine postsynaptic H1-receptors via two different mechanisms, one being carnosine's direct action, and the other being indirectly mediated by histaminergic pathway. The study suggests that carnosine may be an endogenous anticonvulsant factor in the brain and could be used as a new antiepileptic drug in the future.  相似文献   

6.
Bile formation is regulated by hormones, regulatory peptides, and neurotransmitters. Histamine is a biogenic amine that is mainly produced in mast cell, basophile, and neuron. The histaminergic neurons are located in the tuberal region of the posterior hypothalamus in the tuberomammillary nucleus which contains five nucleuses. The E2 nucleus is larger, its activity is more than the other nucleuses, and it also has 50 % of all histaminergic neurons. The aim of the present work was to establish the role of histamine injected into the E2 nucleus in the central regulation of bile secretion, serum lipids level, and hepatic enzymes in the rat. Rats were cannulated in the E2 nucleus for the administration of 1 μl histamine. After 1 week, the common bile duct was cannulated and bile samples were collected every 15 min for 60 min after the administration of histamine, and biochemical analyses were done on blood samples. Centrally applied histamine increased bile secretion at all studied periods, indirect bilirubin, total bilirubin, and low-density lipoprotein cholesterol levels. The results showed that histamine participates in the central regulation of bile secretion in the rat, and the E2 nucleus can be a special site for the regulation of bile secretion and lipid levels. These findings give further insight into the complexity of brain–liver interaction.  相似文献   

7.
Histidine decarboxylase (HDC) catalyzes the biosynthesis of histamine from l-histidine and is expressed throughout the mammalian nervous system by histaminergic neurons. Histaminergic neurons arise in the posterior mesencephalon during the early embryonic period and gradually develop into two histaminergic substreams around the lateral area of the posterior hypothalamus and the more anterior peri-cerebral aqueduct area before finally forming an adult-like pattern comprising five neuronal clusters, E1, E2, E3, E4, and E5, at the postnatal stage. This distribution of histaminergic neuronal clusters in the rat hypothalamus appears to be a consequence of neuronal development and reflects the functional differentiation within each neuronal cluster. However, the close linkage between the locations of histaminergic neuronal clusters and their physiological functions has yet to be fully elucidated because of the sparse information regarding the location and orientation of each histaminergic neuronal clusters in the hypothalamus of rats and mice. To clarify the distribution of the five-histaminergic neuronal clusters more clearly, we performed an immunohistochemical study using the anti-HDC antibody on serial sections of the rat hypothalamus according to the brain maps of rat and mouse. Our results confirmed that the HDC-immunoreactive (HDCi) neuronal clusters in the hypothalamus of rats and mice are observed in the ventrolateral part of the most posterior hypothalamus (E1), ventrolateral part of the posterior hypothalamus (E2), ventromedial part from the medial to the posterior hypothalamus (E3), periventricular part from the anterior to the medial hypothalamus (E4), and diffusely extended part of the more dorsal and almost entire hypothalamus (E5). The stereological estimation of the total number of HDCi neurons of each clusters revealed the larger amount of the rat than the mouse. The characterization of histaminergic neuronal clusters in the hypothalamus of rats and mice may provide useful information for further investigations.  相似文献   

8.
Anatomical and electrophysiological methods were used to investigate the existence and role of inputs from the magnocellular tuberomammillary nucleus to the supraoptic nucleus. After injecting either Fluoro-Gold or rhodamine-labeled latex microspheres into the supraoptic nucleus, consistent patterns of retrogradely labeled neurons within the tuberomammillary nucleus were observed. The results indicate that both subdivisions of the supraoptic nucleus, the tuberal and the anterior, receive input from the tuberomammillary nucleus. Injections into the tuberal supraoptic nucleus tended to label more cells in the contralateral tuberomammillary nucleus, while injections into the anterior supraoptic nucleus may label more cells on the ipsilateral side. The in vitro intracellular electrophysiological results support the anatomical findings and extend them in several ways. Some tuberomammillary neurons were found to project to the supraoptic nuclei on both sides of the brain. Intracellular Lucifer Yellow injections into tuberomammillary cells after electrophysiological recording revealed labeled axons that were traceable into the supraoptic nucleus, where apparent varicosities (possible en passant terminals) were seen. Magnocellular tuberomammillary nucleus neurons had characteristic passive and active membrane properties and morphology, similar to histaminergic neurons in this area studied by other workers. Finally, in two of the 21 cases, Lucifer Yellow injection into one neuron revealed dye-coupled pairs of tuberomammillary neurons. Previous work by others has shown that histamine excited cells in the tuberal subdivision of the supraoptic nucleus, stimulating vasopressin release, and that the tuberomammillary nucleus provides histaminergic input to the anterior portion of the supraoptic. The present findings show that the tuberomammillary nucleus supplies input to both subdivisions of the supraoptic nucleus and that this input is provided bilaterally. Taken together with previous work, these data suggest that the tuberomammillary nucleus provides histaminergic input to the supraoptic nucleus and may be involved specifically with vasopressin release.  相似文献   

9.
Amylin (AMY) is a 37 amino acid peptide of pancreatic origin that has been localized in peripheral and central nervous structures. Both peripheral and central injection of the peptide causes various effects, including anorectic behavior in rats. Prompted by previous reports showing that the anorectic effect of AMY is mediated by histamine release, we immunohistochemically investigated possible relationships between these two systems at the light microscopical level. Monkey (Macaca fuscata japonica) hypothalamus specimens were submitted to immunohistochemical double staining procedures using AMY and histidine decarboxylase (HDC) antisera. AMY-immunoreactive neurons were found widely distributed in several nuclei of the monkey hypothalamus including the supraoptic, paraventricular, perifornical, periventricular, ventromedial, arcuate, and tuberomammillary nuclei. We detected AMY-immunoreactive nerve fibers throughout the hypothalamus, the median eminence and hypothalamus-neurohypophysial tract. Although AMY- and HDC-immunoreactive neuronal cell bodies occupied distinct hypothalamic zones, many HDC-immunoreactive cell bodies and dendrites, particularly those in the periventricular, arcuate, and rostral tuberomammillary regions, were surrounded by numerous AMY-immunoreactive nerve fiber varicosities. These findings demonstrate for the first time the presence of a discrete number of AMY-immunoreactive neurons in the monkey hypothalamus and add morphological support to the experimental data demonstrating that AMY probably exerts its influence on food intake via the histaminergic system.  相似文献   

10.
Histamine H(2) receptor expression was studied in adult and developing rat brain. Northern blot and in situ hybridizations indicated that histamine H(2) receptor messenger RNA expression is widespread and not limited to neurons in the adult rat brain. Prominent H(2) receptor expression in the adult brain was seen in the dentate gyrus, hippocampal subfields CA1-CA3, piriform cortex and in some diencephalic nuclei, e.g. in the suprachiasmatic nucleus and the red nucleus. Most of the adult brain nuclei displayed a very low H(2) receptor expression. Histamine H(2) receptor was also expressed during development in widespread areas of the central nervous system, coinciding with the transient production of histamine in the raphe neurons at embryonic day 15. From embryonic days 16 and 17 until birth, histamine H(2) receptor expression in the cortical plate coincided with the development and sprouting of histaminergic fibers into the cerebral cortex. The widespread and diffuse expression of histamine H(2) receptors in the adult rat brain suggests that the H(2) receptor modulates the excitability of neuron and astrocyte functions in many brain areas rather than mediating targeted cell-to-cell signals. During development, histamine H(2) receptor expression is seen in several target areas for the histaminergic fibers. This could indicate that histamine, through the H(2) receptor, regulates fetal development of the brain.  相似文献   

11.
A histamine-containing neuronal system in human brain   总被引:7,自引:0,他引:7  
A well-organized network of varicose fibers was revealed throughout the frontal and temporal cortex of adult humans with specific antisera against histamine. The densest network of fibers was seen in lamina I, where varicose fibers were seen to run in parallel to the overlying pia mater. Electron microscopic immunohistochemistry revealed histamine-immunostaining in granules in a small number of nerve fibers and varicosities. Hypothalamic samples obtained from autopsy brains of adult humans revealed numerous histamine-immunoreactive nerve cell bodies in the posterior basal hypothalamus in and around the tuberomammillary nucleus. The results suggest that a histaminergic neuronal system reminiscent of that described in rodents is present in human brain.  相似文献   

12.
Previous studies have indicated that thiamine deficiency is associated with clearly elevated histamine concentrations in the rat hypothalamus, whereas other brain regions contain normal amounts of the amine. The purpose of this study was to find out if the increased hypothalamic histamine concentrations are due to increased numbers of mast cells or changes in neuronal histamine stores.Thiamine-deficiency was induced by daily injections of pyrithiamine until the animals lost the righting reflex. Control animals were pair-fed with either thiamine-deficient or normal thiamine-supplemented food. A significant increase in histamine concentration was observed in the hypothalamus and pons-medulla of the pyrithiamine-treated rats, but not in the cerebellum, thalamus, cerebral cortex or pituitary gland. Immunohistochemically, no histamine-containing mast cells were found in the hypothalami of the pyrithiamine-treated rats or control animals. The histaminergic tuberomammillary neurons were very intensely immunofluorescent, and the density of histamine-immunoreactive nerve fibers in the hypothalamus was also increased in the pyrithiamine-treated animals.  相似文献   

13.
The tuberomammillary nucleus (TM) located in the posterior part of the hypothalamus is the main source of neuronal histamine in the central nervous system. Recent work from our laboratories has indicated an involvement of the TM region in neuronal plasticity and reinforcement processes. In the present study, we investigated the effects of TM lesions on the performance of adult and aged Wistar rats in a set of learning tasks, which differed in terms of complexity and reward contingencies (habituation learning, inhibitory avoidance, discrimination learning, Morris water maze). An improvement was found in every test applied, indicating that TM lesions seem to generally enhance learning and memory capacities independent of the special demands of a given task. Age-related learning deficits were strongly diminished. Immunohistochemistry revealed that the excitotoxic lesions used to destroy the TM region led to a marked decrease in the number of histamine-positive neurons in the vicinity of the injection site, indicating an involvement of the brain histaminergic system in the observed behavioral changes. Received: 1 October 1996 / Accepted: 18 August 1997  相似文献   

14.
Histaminergic neurons in adult vertebrate brain are confined to the posterior hypothalamic area, where they are comprised of scattered groups of neurons referred to as the tuberomammillary nucleus. Histamine regulates hormonal functions, sleep, food intake, thermoregulation and locomotor activity, for example. In the zebrafish, Danio rerio, histamine was detected only in the brain, where also the histamine synthesizing enzyme L-histidine decarboxylase (HDC) was expressed. It is possible that histamine has first evolved as a neurotransmitter in the central nervous system. We established sensitive quantitative in situ hybridization methods for histamine H(1) and H(2) receptors and HDC, to study the modulation of brain histaminergic system under pathophysiological conditions. A transient increase in H(1) receptor expression was seen in the dentate gyrus and striatum after a single injection of kainic acid, a glutamate analog. H(1) antagonists are known to increase duration of convulsions, and increased brain histamine is associated with reduced convulsions in animal models of epilepsy. No HDC mRNA was detected in brain vessels by in situ hybridization, which suggests lack of histamine synthesis by brain endothelial cells. This was verified by lack of HDC mRNA in a rat brain endothelial cell line, RBE4 cells. Both H(1) and H(2) receptor mRNA was found in this cell line, and the expression of both receptors was downregulated by dexamethasone. The findings are in agreement with the concept that histamine regulates blood-brain barrier permeability through H(1) and H(2) receptor mediated mechanisms. Hibernation is characterized by a drastic reduction of central functions. The activity of most transmitter systems is maintained at a very low level. Surprisingly, histamine levels and turnover were clearly elevated in hibernating ground squirrels, and the density of histamine-containing fibers was higher than in euthermic animals. It is possible that histamine actively maintains the low activity of other transmitters during the hibernation state.  相似文献   

15.
A splice variant of choline acetyltransferase mRNA has recently been identified in the pterygopalatine ganglion of rat. An antibody against this variant protein (designated pChAT) was demonstrated to immunolabel peripheral cholinergic neurons. In the present study, we investigated the expression of pChAT in rat brain. Amongst the brain regions examined, magnocellular neurons in the tuberomammillary nucleus of the posterior hypothalamus were immunohistochemically labelled with anti-pChAT antibody, whilst no immunolabelling was detected in cholinergic neurons in the basal forebrain or striatum. RT-PCR analysis confirmed the expression of pChAT mRNA in the posterior hypothalamus. The distribution of pChAT-positive neurons in the tuberomammillary nucleus was compared with that of neurons positive for adenosine deaminase, which is contained in all neurons of this nucleus. After colchicine treatment to inhibit axonal transport of enzyme, virtually all pChAT-positive cells contained adenosine deaminase. Conversely, about 85% of adenosine deaminase-positive cells contained pChAT in the ventral area, whilst 19% of adenosine deaminase-positive cells were pChAT-positive in the dorsal area. Long axonal projections of pChAT-positive cells in the tuberomammillary nucleus were shown by retrograde labelling of these cells after injection of cholera-toxin B subunit into the cerebral cortex. This study demonstrates that a splice variant of choline acetyltransferase is expressed in the tuberomammillary nucleus of rat. The results raise the possibility that some of the known diverse projection areas of this nucleus may have a cholinergic component.  相似文献   

16.
The tuberomammillary nucleus (TM), located in the posterior hypothalamic region, consists of five subgroups and is the only known source of brain histamine. In the present experiment, rats received bilateral ibotenic acid or sham lesions in the rostroventral part of the TM (E2-region). Three weeks later they were tested on the elevated plus-maze test of fear and anxiety. Lesions in the tuberomammillary E2-region elevated the time spent on the open arms, as well as excursions into the end of the open arms, increased scanning over the edge of an open arm, and decreased risk-assessment from an enclosed arm. Thus, partial destruction of TM intrinsic neurons can induce anxiolytic-like effects which are possibly related to a lesion-induced reduction of histaminergic activity. Received: 28 August 1997 / Accepted: 20 November 1997  相似文献   

17.
Summary The synaptic connections between histaminergic neurons and substance P (SP) afferents in the caudal magnocellular nucleus (CM) of the hypothalamus were examined using an immunoelectron microscopic mirror method. SP-immunoreactive (SP-IR) terminals made synaptic contacts with the somata, somatic spines and dendrites of histidine decarboxylase immunoreactive (HDC-IR) neurons. This suggests that SP afferents exert monosynaptic influence on the central histaminergic neuronal system.  相似文献   

18.
Increased activity of the histaminergic neurons of the posterior hypothalamus has been implicated in the facilitation of behavioral wakefulness. Recent evidence of reciprocal projections between the sleep-active neurons of the preoptic/anterior hypothalamus and the histaminergic neurons of the tuberomammillary nucleus suggests that histaminergic innervation of the preoptic/anterior hypothalamic area may be of particular importance in the wakefulness-promoting properties of histamine. To test this possibility, we used microdialysis sample collection in the preoptic/anterior hypothalamic area of cats during natural sleep-wakefulness cycles, 6 h of sleep deprivation induced by gentle handling/playing, and recovery sleep. Samples were analyzed by a sensitive radioenzymatic assay. Mean basal levels of histamine in microdialysate during periods of wakefulness (1.155+/-0.225 pg/microl) did not vary during the 6 h of sleep deprivation. However, during the different sleep states, dramatic changes were observed in the extracellular histamine levels of preoptic/anterior hypothalamic area: wakefulness>non-rapid eye movement sleep>rapid eye movement sleep. Levels of histamine during rapid eye movement sleep were lowest (0.245+/-0.032 pg/microl), being significantly lower than levels during non-rapid eye movement sleep (0.395+/-0.081 pg/microl) and being only 21% of wakefulness levels.This pattern of preoptic/anterior hypothalamic area extracellular histamine levels across the sleep-wakefulness cycle closely resembles the reported single unit activity of histaminergic neurons. However, the invariance of histamine levels during sleep deprivation suggests that changes in histamine level do not relay information about sleep drive to the sleep-promoting neurons of the preoptic/anterior hypothalamic area.  相似文献   

19.
The synaptic connections between histaminergic neurons and substance P (SP) afferents in the caudal magnocellular nucleus (CM) of the hypothalamus were examined using an immunoelectron microscopic mirror method. SP-immunoreactive (SP-IR) terminals made synaptic contacts with the somata, somatic spines and dendrites of histidine decarboxylase immunoreactive (HDC-IR) neurons. This suggests that SP afferents exert monosynaptic influence on the central histaminergic neuronal system.  相似文献   

20.
Modafinil is a drug used to treat hypersomnolence of narcolepsy. We previously reported that modafinil increases hypothalamic histamine release in rats but did not increase locomotor activity in histamine-depleted mice, suggesting that modafinil-induced locomotor activity involves the histaminergic system. Modafinil is also thought to express its effect through the orexinergic neurons, and orexin increases hypothalamic histamine release. These findings led us to investigate whether modafinil activates the histaminergic system via the orexinergic system. In the present study, we performed in vivo microdialysis and c-Fos immunohistochemistry to investigate whether the orexinergic system mediates the activation of the histaminergic system by modafinil using orexin neuron-deficient mice. Two hours after the injection, modafinil (150 mg/kg) caused a significant increase of histamine release compared to the basal release in wild type mice. However, modafinil had no effect on the histamine release in orexin neuron-deficient mice. By immunohistochemical study, we found that there was no neuronal activation in the tuberomammillary nucleus where the cell bodies of the histaminergic neurons exclusively exist in orexin neuron-deficient mice. These findings indicate that modafinil-induced increment of histamine release requires intact orexinergic neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号