首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Most studies agree that males and females respond differently to drugs of abuse. In females, estradiol enhances the behavioral response to cocaine. However, studies on the role of testosterone and the locomotor response to psychostimulants in the male rat are inconclusive. Our study was designed to determine the behavioral effects of testosterone on the development and persistence of cocaine sensitization in male rats. We tested different doses of cocaine (10, 15 and 30 mg/kg) to determine which dose induced locomotor sensitization in intact (INT) and gonadectomized (GDX) animals. We also investigated if GDX males with testosterone replacement (GDX-T) showed a similar locomotor response to cocaine as INT males.Our data showed that gonadectomy enhanced the locomotor response to a single cocaine injection. This effect was not observed in gonadectomized rats that received testosterone replacement. However, GDX rats did not show a progressive increase in their locomotor response to repeated cocaine administration (15 and 30 mg/kg) (sensitization) as did INT and GDX-T animals. It is possible that in GDX males, the initial high locomotor response to cocaine creates a ceiling effect that limits further increase in cocaine-induced hyperactivity. These findings indicate that testosterone not only modulates the behavioral response to a single and to repeated cocaine injections, but is also essential for male rats to become sensitized to cocaine.  相似文献   

2.
Chronic cocaine administration typically results in increased locomotor activity, known as behavioral sensitization. Investigating the time course of locomotor activity across trials may provide a more detailed analysis of the temporal changes that might occur within sensitization. Prior research with rodents shows that the peak of locomotor activity shifts from acute to chronic drug administration. The purpose of the current experiment was to investigate acute versus chronic cocaine effects on locomotor activity in an avian species, Japanese quail, and to investigate whether this phenomenon is dose-dependent. Subjects received daily ip injections of saline or 5, 10, or 20 mg/kg cocaine for 20 days. Following each injection, birds were placed in standard locomotor activity chambers, and activity was recorded for 150 min. A cocaine challenge was given after a ten-day withdrawal period. Two retraining trials were given to re-establish cocaine responding prior to a saline challenge in the drug-paired environment. Results showed that repeated administration of the 10 mg/kg dose of cocaine enhanced activity across 120 min compared with acute administration. In contrast, repeated administration of the 20 mg/kg dose resulted in greater cocaine-induced activity for 60 min compared with acute administration. In addition, behavioral sensitization was shown to be dose-dependent and appeared to be due, at least in part, to conditioning.  相似文献   

3.
The aim of the present study was to determine if pre-exposure to high doses of cocaine can subsequently alter the rewarding effects of this drug. Adult male mice received a pretreatment of physiological saline, or 12.5 or 25 mg/kg of cocaine (one injection a day for five days). After an interval of six days without injections, the rewarding effects of low doses of cocaine (0.5, 1 or 1.5 mg/kg) were evaluated in the conditioned place preference (CPP) paradigm. Doses of 1 and 1.5 mg/kg induced a clear CPP in animals pre-treated with saline but were ineffective in those pre-treated with 25 mg/kg of cocaine. Only the dose of 1.5 mg/kg induced CPP in mice pre-treated with 12.5 mg/kg of cocaine. Our results, which reveal a decrease in the conditioned rewarding effects of threshold doses of cocaine, demonstrate that exposure to high doses of this drug can alter the reward system.  相似文献   

4.
Recent research suggests an involvement of pro-opiomelanocortin (POMC) gene products in modulating cocaine reward and addiction-like behaviors in rodents. In this study, we investigated whether cocaine-induced conditioned place preference (CPP) alters POMC gene expression in the brain or pituitary of rats. Sprague-Dawley rats were conditioned with 4 injections of 0, 10 or 30 mg/kg cocaine (i.p.) over 8 days and tested 4 days after the last conditioning session. Another group received the same pattern of cocaine injections without conditioning. POMC mRNA levels in the hypothalamus (including arcuate nucleus), amygdala and anterior pituitary, as well as plasma ACTH and corticosterone levels were measured. Cocaine place conditioning at 10 and 30 mg/kg doses increased POMC mRNA levels in a dose-dependent manner in the hypothalamus, with no effect in the amygdala. Cocaine CPP had no effect on POMC mRNA levels in the anterior pituitary or on plasma ACTH or corticosterone levels. In rats that received cocaine at 30 mg/kg without conditioning, there was no such effect on hypothalamic POMC mRNA levels. Alteration of POMC gene expression in the hypothalamus is region-specific after cocaine place conditioning, and dose-dependent. The increased POMC gene expression in the hypothalamus suggests that it is involved in the reward/learning process of cocaine-induced conditioning.  相似文献   

5.
This study was designed to investigate if the kappa opioid system regulates the locomotor response to cocaine in the female rat and to determine if the effect is dependent on estradiol treatment. Adult rats were ovariectomized (OVX) and half received an estradiol (OVX-EB) implant. After a week, rats were injected for 5 consecutive days with vehicle or with the kappa opioid receptor (KOPr) agonist U-69593 (0.16, 0.32, and 0.64 mg/kg) 15 min prior to cocaine injection (15 mg/kg). Following a 7-day drug-free period, rats were challenged with cocaine (Day 13). The locomotor response to cocaine was measured on Days 1, 5, and 13. U-69593 (0.32 mg/kg) decreased cocaine-induced locomotor activity in drug-na?ve OVX rats and in those that received the OVX-EB implant. These results indicate that the acute effects of U-69593 are independent of estradiol treatment. Repeated exposure to U-69593 (0.32 mg/kg) prior to cocaine decreased the development of behavioral sensitization in OVX-EB-implanted rats. This decrease in cocaine-induced hyperlocomotion persisted after 1 week of cocaine withdrawal. These data indicate that the KOPr system participates in estradiol modulation of cocaine-induced behavioral sensitization in the female rat.  相似文献   

6.
Ultrasonic vocalization at 55 kHz (55 kHz-USVs) by rodents has been proposed to be a behavioral manifestation of affectively positive incentive motivation. To examine the extent to which 55 kHz-USV emissions correlate with cocaine-induced locomotor activity, we measured cocaine-induced 55 kHz-USVs and their relationship to cocaine-induced locomotor sensitization in rats. We demonstrate that similar to locomotor responses, 55 kHz-USVs are also sensitized by exposure to cocaine. Furthermore, we show that the magnitude of cocaine-induced 55 kHz-USV sensitization is positively correlated with that of locomotor sensitization. Moreover, we demonstrate that rats selectively bred for high rates of 55 kHz-USVs exhibit higher levels of cocaine-induced 55 kHz-USV sensitization than animals selectively bred for low levels of 55 kHz USVs. These results suggest that the neural circuits underlying 55 kHz-USV, which may directly reflect affective experience/motivation, can be sensitized by cocaine in a way that resembles locomotor sensitization.  相似文献   

7.
In the present voltammetric study, we have characterized cocaine-induced changes in evoked dopamine release and uptake in the striatum of freely moving mice in real time. Cocaine induced marked dopamine uptake inhibition measured as apparent Km changes, producing a maximal effect 20 min following a single injection (15 mg/kg, i.p.). Changes in uptake were paralleled by increases in evoked dopamine release per stimulus pulse, revealing a high correlation between these two parameters following cocaine administration. This initial characterization of cocaine effects on striatal dopamine transmission in the commonly used C57BL/6 mouse strain provides a basis for future voltammetric studies using genetic mouse models.  相似文献   

8.
Growing evidence has pointed to an interaction between the tetracycline antibiotic minocycline and drugs with abuse liability such as opioids and amphetamines. In this work, we tested the hypothesis that similar to its effects on methamphetamine-induced locomotor sensitization, minocycline may influence the behavioral effects of cocaine. Experiments were performed in male C57BL/6J mice using an automated system to measure locomotor activity. We found that 80 mg/kg minocycline significantly reduced locomotor activity when administered either alone or injected 30 min prior to cocaine, which increased locomotor activity. To investigate whether minocycline selectively affects the development of locomotor sensitization induced by four daily injections of 10 mg/kg cocaine, we sought a schedule of minocycline administration that does not per se affect locomotor activity. Thus, we selected 40 mg/kg minocycline administered 3 h prior to cocaine; minocycline did not affect cocaine-stimulated locomotor activity on the first day of administration but prevented the development of cocaine sensitization. We also tested whether minocycline would affect an already established cocaine sensitization. After establishing the sensitization effect by four daily injections, cocaine treatment was discontinued and mice were treated with minocycline daily (days 5–11) or on day 11 only. There was no effect of minocycline treatment on the response of cocaine-sensitized mice to the challenge dose of cocaine on day 11. The mechanisms by which minocycline interferes with the development of cocaine sensitization need to be characterized.  相似文献   

9.
Given the posited role of enhanced AMPA-mediated synaptic transmission in relapse to drug seeking, we investigated whether systemic administration of the AMPA receptor antagonist GYKI 52466 inhibits cocaine-taking and cocaine-seeking behavior in rats. Rats were trained to self-administer cocaine until stable self-administration was achieved. Effects of GYKI 52466 (1, 3, or 10 mg/kg, i.v.) on cocaine self-administration were assessed. Animals were allowed to re-establish stable cocaine self-administration and were then behaviorally extinguished from drug taking. The effects of GYKI 52466 (3, 10 mg/kg, i.v.) on cocaine-induced reinstatement of drug-seeking behavior were assessed. We found that GYKI 52466 failed to inhibit cocaine-taking and cocaine-seeking in both the self-administration and reinstatement paradigms. We suggest that although AMPA receptors may be involved in cocaine reward and addiction, the AMPA receptor antagonist GYKI 52466 has low therapeutic potential for cocaine addiction treatment.  相似文献   

10.
Adult male rats were exposed to a diet that contained 100 parts per million added cadmium or a control diet for 72 days before being tested in a Digiscan activity monitor. During the 1-hr test period, each animal's baseline activity levels were recorded for 20 min. Animals then received intraperitoneal injections of 0, 10, 20, or 40 mg/kg cocaine HCl, and their activity levels were recorded for the remaining 40 min of the test session. The results showed that the 10, 20, and 40 mg/kg doses of cocaine produced behavioral activation in the control-diet animals. For cadmium-treated animals, cocaine-induced behavioral changes at the 10 mg/kg dose were not observed, but increased activity was evident at the two higher doses.  相似文献   

11.
Recently, we demonstrated that intact nitric oxide (NO) signaling is essential for the development of cocaine behavioral sensitization in adulthood [M.A. Balda, K.L. Anderson, Y. Itzhak, Differential role of the nNOS gene in the development of behavioral sensitization to cocaine in adolescent and adult B6;129S mice, Psychopharmacology (Berl) 200 (2008) 509–519]. Given the requirement of dopamine (DA) transmission in cocaine-induced behavioral sensitization and the interactions between NO and DA systems, the present study investigated the role of the neuronal nitric oxide synthase (nNOS) gene and the effect of cocaine on the expression of tyrosine hydroxylase (TH)-immunoreactive (-ir) neurons. Adult (postnatal day 80) wild type (WT) and nNOS knockout (KO) mice received saline or a sensitizing regimen of cocaine (20 mg/kg) for 5 days. After 24 h, TH immunoreactivity was assessed in the ventral tegmental area (VTA) and the dorsal striatum (dST) using stereology and Western blotting, respectively. We report that (a) nNOS KO mice express lower levels of TH-ir neurons in the VTA compared to WT counterparts, (b) cocaine administration to WT mice significantly increased striatal TH expression, and (c) the same cocaine administration to nNOS KO mice significantly decreased striatal TH expression. Thus, the nitrergic system may contribute to cocaine-induced behavioral sensitization by regulating dopaminergic neurotransmission.  相似文献   

12.
Sanchez CJ  Bailie TM  Wu WR  Li N  Sorg BA 《Neuroscience》2003,119(2):497-505
These studies examined the ability of the dopamine D1-like agonist SKF 81297 and D1-like antagonist SCH 23390 in the medial prefrontal cortex to alter the reinstatement of cocaine-induced conditioned place preference behavior. Male Sprague-Dawley rats were fitted with bilateral cannulae over the medial prefrontal cortex and subsequently trained in a conditioned place preference task. Animals were trained in this task using four pairings of cocaine (12 mg/kg, i.p.). Conditioned place preference was demonstrated in all animals, and this behavior was then extinguished over a 5-10-day period before testing for reinstatement. Just prior to reinstatement by immobilization stress or a cocaine priming injection (5 mg/kg, i.p.), a microinjection of the D1-like receptor antagonist SCH 23390 (0.01, 0.1 or 1.0 microg/side), or the D1-like receptor agonist SKF 81297 (0.1, 0.3 or 1.0 microg/side) was given into the medial prefrontal cortex. SCH 23390 blocked both stress- and cocaine-induced reinstatement of conditioned place preference after the two higher doses were administered into the medial prefrontal cortex. The highest dose of SKF 81297 (1.0 microg/side) prevented immobilization stress- but not cocaine-induced reinstatement. The highest dose of these drugs given in the absence of stress or cocaine did not produce reinstatement. The results indicate that immobilization stress given within the place-preference chamber is capable of producing reinstatement of cocaine-seeking behavior. The microinjection studies suggest that D1-like receptor antagonism within the prefrontal cortex is sufficient to block reinstatement by stress and cocaine. Furthermore, the results from D1-like receptor activation in the medial prefrontal cortex point to utilization of different neural pathways for stress- and cocaine-induced reinstatement.  相似文献   

13.
Rimonabant is a cannabinoid receptor 1 antagonist, and is used to treat anorexia and obesity. However, it has been suggested that rimonabant may act as a depressant. In the present study, we investigated the depressive effects of rimonabant using behavioral and biochemical methods. A single treatment with rimonabant (10 mg/kg, p.o.) reduced immobility duration in the forced swimming test (FST) to a level similar to that observed for the tricyclic antidepressant, imipramine (15 mg/kg, i.p.). However, mice treated with rimonabant for 2 weeks did not show any significant reductions in immobility duration versus vehicle-treated controls. To investigate why the antidepressant effect of rimonabant disappeared after extended treatment, we carried out 5-bromo-2-deoxyuridine (BrdU) and doublecortin (DCX) immunohistochemistry assay. Numbers of BrdU-immunoreactive cells were not significantly changed after administering rimonabant (10 mg/kg, p.o.) for 2 weeks in the hippocampal dentate gyrus (DG), but interestingly, numbers of DCX-immunopositive cells in the DG were significantly reduced after 2 weeks of rimonabant treatment at doses of 1 or 10 mg/(kg day) compared with vehicle-treated controls (P < 0.05). These results suggest that sub-chronic treatments with rimonabant inhibit cell proliferation in DG, and that a lack of antidepressive activity may be related to a reduction in cell proliferation in this region.  相似文献   

14.
Cocaine-induced modifications of glutamatergic synaptic transmission in the mesolimbic system play a key role in adaptations that promote addictive behaviors. In particular, the activation of ionotropic glutamate N-methyl-d-aspartate receptor (NMDAR) in the ventral tegmental area (VTA) is critical for both cocaine-induced synaptic plasticity induced by a single cocaine injection and for the initiation of cocaine psychomotor sensitization. In this study, we set to determine whether the NR2 subunits of the NMDAR play a specific role in triggering cocaine-induced alterations in synaptic plasticity and the development of psychomotor sensitization. We found that inhibition of NR2A-containing NMDARs by NVP-AAM077, or NR2B-containing receptors by ifenprodil, blocked cocaine-induced increase in the AMPAR/NMDAR currents ratio, a measure of long-term potentiation (LTP) in vivo, in VTA neurons 24 h following a single cocaine injection. Furthermore, inhibition of the NR2A subunit during the development of psychomotor sensitization attenuated the enhanced locomotor activity following repeated cocaine injections. Together, these results suggest that NR2-containing NMDA receptors play an important role in the machinery that triggers synaptic and behavioral adaptations to drugs of abuse such as cocaine.  相似文献   

15.
Humans differ in their initial response to, and subsequent abuse of, addictive drugs like cocaine. Rodents also exhibit marked individual differences in responsiveness to cocaine. Previously, we classified male Sprague–Dawley rats as either low or high cocaine responders (LCRs or HCRs, respectively), based on their acute low-dose cocaine-induced locomotor activity, and found that with repeated drug exposure LCRs exhibit greater cocaine locomotor sensitization, reward and reinforcement than HCRs. Differential cocaine-induced increases in striatal dopamine help to explain the LCR/HCR phenotypes. Differential levels of stress and/or anxiety could also contribute but have not been explored. Here we measured open-field activity and plasma corticosterone levels both pre- and post-cocaine treatment in LCRs, HCRs, and saline-treated controls. The three groups did not differ in baseline locomotor activity or corticosterone levels. Importantly, LCR/HCR differences in corticosterone levels were also not observed following acute cocaine (10 mg/kg, i.p.), when cocaine induced approximately 3.5-fold greater locomotor activity in HCRs than LCRs. Additionally, there were no LCR/HCR differences in plasma corticosterone levels following 5 days of once-daily cocaine, during which time LCRs developed locomotor sensitization such that their cocaine-induced locomotor activity no longer differed from that of HCRs. Likewise, there were no group activity differences in any of four concentric zones within the open-field chamber. In summary, neither plasma corticosterone levels nor thigmotaxis-type anxiety appears to be a factor that contributes to the observed cocaine-induced LCR/HCR behavioral differences.  相似文献   

16.
Initiation of drug use during adolescence is associated with an increased probability to develop a drug addiction. The present study examined dose-response effects of cocaine (0, 5, 10, or 20 mg/kg, i.p.) on locomotor activity in early adolescent (postnatal day (PND) 35), late adolescent (PND 45), and young adults (PND 60) by measuring total distance moved (TDM) and frequency of start-stops. In response to 20 mg/kg cocaine, early adolescents showed the greatest cocaine-induced increase in TDM in comparison to late adolescent and adult rats. At this same dose, early adolescents showed the greatest cocaine-induced attenuation of start-stops relative to older rats. Results suggest that early adolescents engage in more cocaine-induced locomotor activity and less stationary behavior indicating that early adolescents are more sensitive to locomotor activating effects of high dose cocaine than older rats.  相似文献   

17.
Withdrawal from cocaine use often is associated with anxiety and depressive states. In this study the use-dependent, nicotinic acetylcholine receptor antagonist bis-(2,2,6,6-tetramethyl-4-piperidinyl) sebacate (BTMPS) was studied for its ability to reduce these symptoms in two rat models of anxiety and depression. Rats were administered saline vehicle, or two escalating doses of cocaine, for a period of 5 days and they were evaluated during the period after cocaine discontinuation in the elevated plus maze (anxiety) and the forced swim test (affect). BTMPS (0.25, 0.5, or 0.75 mg/kg) was co-administered with saline or cocaine in the dependence phase. Withdrawal from cocaine administration alone resulted in reductions in both the time spent in the open arms of the elevated plus maze test, as well as entries into, and out of, the open arms of the maze. Withdrawal from cocaine also resulted in a reduction of escape behaviors, and the time to first immobility, in the forced swim test. Treatment with BTMPS produced a reversal of cocaine-induced anxiety-like behaviors in the elevated plus maze, including an increase (up to 68%) in time spent in the open arms of the maze and an increase in the number of crossings between open and enclosed arms. BTMPS also reduced depressive-like behaviors associated with the forced swim test, including up to a 62% increase in the time to first immobility and a 50% increase in escape behavior. These results provide proof of concept for the development and use of cholinergic compounds in the treatment of substance abuse.  相似文献   

18.
We have demonstrated previously that mice expressing a constitutive deletion of the kainate receptor subunit GluR5 (GluR5 KO) do not differ from wildtype (WT) littermates of a congenic C57BL/6 background with regard to both the development of morphine physical dependence as measured by naloxone-precipitated withdrawal signs and to morphine reward as revealed by the expression of conditioned place preference (CPP). However, unlike WT, GluR5 KO mice fail to develop antinociceptive tolerance following repeated systemic morphine administration. In this report, we examined the impact of GluR5 deletion on cocaine-mediated CPP and locomotor sensitization. Expression of CPP was evident in WT mice following repeated daily administration of 20 mg/kg (but not 10 mg/kg) i.p. cocaine. Interestingly, GluR5 KO mice exhibited enhanced cocaine preference as compared with WT mice at both 10 and 20 mg/kg doses. In addition, while GluR5 KO mice did not differ from WT with respect to baseline locomotor activity, mutant mice demonstrated increased locomotor hyperactivity versus WT mice after repeated injection of 15 mg/kg i.p. cocaine. Collectively, these data indicate that GluR5 appears to negatively modulate some psychostimulant and rewarding properties of cocaine, as demonstrated by heightened sensitization and salience in mutant mice.  相似文献   

19.
Numa R  Kohen R  Poltyrev T  Yaka R 《Neuroscience》2008,155(3):649-658
A variety of mechanisms has been suggested for cocaine toxicity, including the possibility that cocaine induces an increase in oxidative stress (OS) due to excessive oxidation of dopamine (e.g. dopamine quinine), or by redox cycling of cocaine oxidized metabolites. However, the association between oxidative status in the brain and cocaine induced-behavior is poorly understood. Therefore, we examined the ability of the unique antioxidant tempol to attenuate cocaine-induced oxidative damage and behavioral response. Acute cocaine treatment significantly elevated OS markers in prefrontal cortex (PFC) and nucleus accumbens (NAc) in rats, both in slices and following a single cocaine injection, which corresponded with a decrease in total antioxidant capacity (TAC). Tempol, at the optimal concentration we determined that was needed to observe an antioxidant non-toxic effect in vitro (1 mM) and in vivo (200 mg/kg), completely abolished the elevation of OS markers and prevented the reduction in TAC in these areas. Importantly, tempol injections, at a dose that does not affect the basal levels of locomotor activity, attenuated both the development and expression of cocaine-induced locomotor sensitization. Finally, in cocaine-sensitized animals, tempol prevented the elevation of OS markers in both PFC and NAc. Our findings suggest that oxidation of specific sites in the brain reward system by cocaine is accompanied with behavioral changes. Tempol has a neuro-protective effect against cocaine toxicity in these regions, and it may be beneficial in the treatment of cocaine addiction.  相似文献   

20.
Dimenhydrinate (DIM) is an over-the-counter antihistamine consisting of diphenhydramine (DIP) and 8-chlorotheophylline (CTP). Medical use of DIM is for prevention of nausea and motion sickness. Recently, it has been reported that DIM may be used alone or in combination with other drugs for recreational purposes due to its euphoric and hallucinogenic effects. To investigate the putatively rewarding properties of DIM and its constituents DIP and CTP, we used a conditioned place preference (CPP) test in mice. DIM significantly induced CPP at a dose of 30 mg/kg. Neither DIP (3, 10, and 30 mg/kg) nor CTP (3, 10, and 30 mg/kg) alone induced CPP. Because neither DIP nor CTP resulted in CPP, the rewarding property of DIM appears to be caused by the sum of the effects of its constituents. In addition, low doses of DIM (3 mg/kg), co-administered with low doses of cocaine (7.5 mg/kg), significantly induced CPP, while neither low-dose DIM (3 mg/kg) nor low-dose cocaine (7.5 mg/kg) administered separately induced CPP. This result suggests the liability of DIM use in combination with other abused drugs to create a stronger effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号