首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Problem  Cytokines, advanced glycation end products (AGEs), and their receptor RAGE have been recently suggested to play a role in human pregnancy. In this study, we sought to determine the alterations of plasma AGEs, soluble RAGE (sRAGE), and proinflammatory cytokines in normal pregnancies and those complicated with type 1 diabetes mellitus.
Method of study  These parameters were measured in samples from healthy non-pregnant (C), diabetic non-pregnant (D), healthy pregnant (HP), and pregnant diabetic (DP) women.
Results  In the first trimester, DP showed lower sRAGE and higher AGEs compared to HP. In the DP group, significant negative correlations were seen between TNF-α and lipopolysaccharide (LPS)-stimulated ΙL-6 in the first trimester and sRAGE in the third trimester. LPS-stimulated IL-12 was positively correlated with levels of AGEs in the third trimester.
Conclusion  We detected several differences in the levels of AGEs, sRAGE, and proinflammatory cytokines between euglycemic and diabetic pregnancies.  相似文献   

2.
Although the pathogenesis of sporadic Alzheimer disease (AD) is not clearly understood, it is likely dependent on several age-related factors. Diabetes is a risk factor for AD, and multiple mechanisms connecting the 2 diseases have been proposed. Hyperglycemia enhances the formation of advanced glycation end products (AGEs) that result from the auto-oxidation of glucose and fructose. The interaction of AGEs with their receptor, named RAGE, elicits the formation of reactive oxygen species that are also believed to be an early event in AD pathology. To investigate a functional link between the disorders diabetes and AD, the effect of 2 AGEs, pentosidine and glyceraldehydes-derived pyridinium (GLAP), was studied on BACE1 expression both in vivo, in streptozotocin treated rats, and in vitro in differentiated neuroblastoma cells. We showed that pentosidine and GLAP were able to upregulate BACE1 expression through their binding with RAGE and the consequent activation of NF-κB. In addition, both pentosidine and GLAP were found to be increased in the brain in sporadic AD patients. Our findings demonstrate that activation of the AGEs/RAGE axis, by upregulating the key enzyme for amyloid-β production, provides a pathologic link between diabetes mellitus and AD.  相似文献   

3.
Atherosclerosis and renal disease are related conditions, sharing several risk factors. This includes hyperlipidaemia, which may result in enhanced lipoprotein accumulation and chemical modification, particularly oxidation, with formation of advanced lipoxidation endproducts (ALEs). We investigated whether increased lipid peroxidation plays a major role in the pathogenesis of lipid‐induced renal disease, via receptor‐mediated mechanisms involving the scavenger and advanced glycation endproduct (AGE) receptors. Mice knocked out for galectin‐3 (Gal3?/?), an AGE receptor previously shown to protect from AGE‐induced renal injury, and the corresponding wild‐type (Gal3+/+) animals, were fed an atherogenic high‐fat diet (HFD; 15% fat, 1.25% cholesterol and 0.5% sodium cholate); mice fed a normal‐fat diet (NFD; 4% fat) served as controls. Gal3+/+ mice fed a HFD developed glomerular disease, as indicated by proteinuria, mesangial expansion and glomerular hypertrophy and sclerosis. Glomerular injury was associated with increased glomerular matrix protein expression, ALE and oxidized LDL content, oxidative stress, AGE and scavenger receptor expression and macrophage infiltration, with only modest renal/glomerular fat accumulation and changes in lipid metabolism. Fibrotic and inflammatory changes, together with accumulation of ALEs, such as 4‐hydroxy‐2‐nonenal adducts and Nε‐carboxymethyllysine, oxidative stress and expression of the receptor of AGEs (RAGE), were significantly more marked in Gal3?/? animals, whereas fat deposition and abnormalities in lipid metabolism remained modest. Thus, lipid‐induced renal damage is mainly dependent on lipid peroxidation with formation of carbonyl reactive species and ALEs, which accumulate within the kidney tissue, thus triggering receptor‐mediated pro‐inflammatory signalling pathways, as in atherogenesis. Moreover, galectin‐3 exerts a significant role in the uptake and effective removal of modified lipoproteins, with diversion of these products from RAGE‐dependent pro‐inflammatory pathways associated with downregulation of RAGE expression. Copyright © 2009 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.  相似文献   

4.
Advanced glycation end products (AGEs) are associated with the pathogenesis of various diseases. AGEs induce excess accumulation of extracellular matrix and expression of profibrotic cytokines. In addition, studies on receptor for advanced glycation end products (RAGE) have shown that the ligand-RAGE interaction activates several intracellular signaling cascades associated with several fibrotic diseases. We investigated the expression of AGEs and RAGE in samples from patients with idiopathic pulmonary fibrosis (IPF) and non-specific interstitial pneumonia (NSIP). Lung tissues and plasma samples from patients with IPF (n=10), NSIP (n=10), and control subjects (n=10) were obtained. Expression of AGEs and RAGE was determined by immunofluorescence assay of lung tissue. Circulating AGEs were measured by Western blot and enzyme-linked immunosorbent assay. Lungs with IPF showed strong expression for both AGEs and RAGE compared to that in NSIP and controls. However, no difference in AGE or RAGE expression was observed in lungs with NSIP compared to that in the controls. Levels of circulating AGEs also increased significantly in lungs of patients with IPF compared to those with NSIP and normal control. Increased AGE-RAGE interaction may play an important role in the pathogenesis of IPF.  相似文献   

5.
Li XH  Lv BL  Xie JZ  Liu J  Zhou XW  Wang JZ 《Neurobiology of aging》2012,33(7):1400-1410
Accumulation of β-amyloid and hyperphosphorylated tau with synapse damage and memory deterioration are hallmark lesions of Alzheimer disease (AD), but the upstream causative factors are elusive. The advanced glycation endproducts (AGEs) are elevated in AD brains and the AGEs can stimulate β-amyloid production. Whether and how AGEs may cause AD-like tau hyperphosphorylation and memory-related deficits is not known. Here we report that AGEs induce tau hyperphosphorylation, memory deterioration, decline of synaptic proteins, and impairment of long-term potentiation (LTP) in rats. In SK-NS-H cells, upregulation of AGEs receptor (RAGE), inhibition of Akt, and activation of glycogen synthase kinase-3 (GSK-3), Erk1/2, and p38 were observed after treatment with AGEs. In rats, blockage of RAGE attenuated the AGE-induced GSK-3 activation, tau hyperphosphorylation, and memory deficit with restoration of synaptic functions, and simultaneous inhibition of GSK-3 also antagonized the AGE-induced impairments. Our data reveal that AGEs can induce tau hyperphosphorylation and impair synapse and memory through RAGE-mediated GSK-3 activation and targeting RAGE/GSK-3 pathway can efficiently improve the AD-like histopathological changes and memory deterioration.  相似文献   

6.
An excess of reactive carbonyl compounds (carbonyl stress) and their reaction products, advanced glycation endproducts (AGEs), are thought to play a decisive role in the pathogenesis of neurodegenerative disorders and Parkinson's disease (PD) in particular. Accumulation of AGEs in various intracellular pathological hallmarks of PD, such as Lewy bodies, densely crosslinked intracellular protein deposits formed from neurofilament components and α-synuclein, have already been described in patients in advanced stages of the disease. There is, however, no indication of the involvement of AGE-induced crosslinking of α-synuclein in very early stages of the disease. In this study, we observed that AGEs and α-synuclein are similarly distributed in very early Lewy bodies in the human brain in cases with incidental Lewy body disease. These cases might be viewed as pre-Parkinson patients, i.e. patients who came for autopsy before the possible development of clinical signs of PD. AGEs are both markers of transition metal induced oxidative stress as well as, inducers of protein crosslinking and free radical formation by chemical and cellular processes. Thus, it is likely that AGE promoted formation of Lewy bodies reflects very early causative changes rather than late epiphenomenons of PD.  相似文献   

7.
糖尿病时糖基化终产物(advanced glycation end products,AGEs)生成与蓄积不仅加速糖尿病本身的发展,还与糖尿病肾病、视网膜病、神经性疾病和心血管疾病等慢性并发症密切相关。AGEs与糖基化终产物受体(receptor for advanced glycation end products,RAGE)相互作用诱导氧化应激,促进炎症反应,影响凝血系统,在糖尿病及其并发症的病理生理过程中起重要作用。抑制AGEs生成、交联结构及阻断AGEs与RAGE相互作用为寻找治疗糖尿病血管并发症的药物提供了新的途径。  相似文献   

8.
Alzheimer's disease (AD) is the most common cause of dementia in developed countries. AD is characterized pathologically by the presence of senile plaques and neurofibrillary tangles (NFTs), the major constituents of which are the amyloid beta protein (Abeta) and tau protein, respectively. Several epidemiological studies have reported moderately increased risks of AD in diabetic patients compared with general population. In diabetes mellitus, the formation and accumulation of advanced glycation end products (AGEs) progress. Recent understandings of this process have confirmed that AGEs - their receptor (RAGE) interactions may play a role in the pathogenesis of diabetic vascular complications and neurodegenerative disorders including AD. Indeed, it has been demonstrated that AGEs can be identified immunohistochemically to be present in both senile plaques and NFTs from patients with AD. Glycation of Abeta markedly enhances its aggregation in vitro, and the glycation of tau, in addition to hyperphosphorylation, appears to enhance the formation of paired helical filaments. Further, RAGE has been found a specific cell surface receptor for Abeta peptite, thus eliciting neuronal cell perturbation. The active participation of RAGE in the pathogenesis of AD has also been confirmed in RAGE-overexpressed transgenic mice. Moreover, we have recently found that glyceraldehyde-derived AGEs, one of the representative ligands for RAGE, exerted cytopathic effects on cultured neuronal cells and that neurotoxic effect of diabetic serum was completely blocked by neutralizing antibodies against glyceraldehydes-derived AGEs. These observations led us to hypothesize that serum or cerebrospinal fluid (CSF) levels of glyceraldehyde-derived AGEs could become a promising biomarker for early detection of AD. We also would like to propose the possible ways of testing our hypothesis. Are the concentrations of glyceraldehyde-derived AGEs in serum or CSF elevated early in the course of dementia? Are these levels correlated with disease severity and progression, especially in patients with diabetes? These clinical studies clarify whether use of serum or CSF levels of glyceraldehyde-derived AGEs as a biomarker for AD might enable more effective diagnosis and treatment of patients with this devastating disorder.  相似文献   

9.
Parkinson's disease (PD) is a common neurodegenerative disorder of unknown pathogenesis characterized by the loss of nigrostriatal dopaminergic neurons. Oxidative stress, microglial activation and inflammatory responses seem to contribute to the pathogenesis. The receptor for advanced glycation endproducts (RAGE) is a multiligand receptor of the immunoglobulin superfamily of cell surface molecules. The formation of advanced glycation end products (AGEs), the first ligand of RAGE identified, requires a complex series of reactions including nonenzymatic glycation and free radical reactions involving superoxide-radicals and hydrogen peroxide. Binding of RAGE ligands results in activation of nuclear factor-kappaB (NF-κB). We show that RAGE ablation protected nigral dopaminergic neurons against cell death induced by the neurotoxin MPTP that mimics most features of PD. In RAGE-deficient mice the translocation of the NF-κB subunit p65 to the nucleus, in dopaminergic neurons and glial cells was inhibited suggesting that RAGE involves the activation of NF-κB. The mRNA level of S100, one of the ligands of RAGE, was increased after MPTP treatment. The dopaminergic neurons treated with MPP(+) and S100 protein showed increased levels of apoptotic cell death, which was attenuated in RAGE-deficient mice. Our results suggest that activation of RAGE contributes to MPTP/MPP(+)-induced death of dopaminergic neurons that may be mediated by NF-κB activation.  相似文献   

10.
Diabetes is an established risk factor for pancreatic cancer (PaC), together with obesity, a Western diet, and tobacco smoking. The common mechanistic link might be the accumulation of advanced glycation end‐products (AGEs), which characterizes all of the above disease conditions and unhealthy habits. Surprisingly, however, the role of AGEs in PaC has not been examined yet, despite the evidence of a tumour‐promoting role of receptor for advanced glycation end‐products (RAGE), the receptor for AGEs. Here, we tested the hypothesis that AGEs promote PaC through RAGE activation. To this end, we investigated the effects of the AGE N?‐carboxymethyllysine (CML) in human pancreatic ductal adenocarcinoma (PDA) cell lines and in a mouse model of Kras‐driven PaC interbred with a bioluminescent model of proliferation. Tumour growth was monitored in vivo by bioluminescence imaging and confirmed by histology. CML promoted PDA cell growth and RAGE expression, in a concentration‐dependent and time‐dependent manner, and activated downstream tumourigenic signalling pathways. These effects were counteracted by RAGE antagonist peptide (RAP). Exogenous AGE administration to PaC‐prone mice induced RAGE upregulation in pancreatic intraepithelial neoplasias (PanINs) and markedly accelerated progression to invasive PaC. At 11 weeks of age (6 weeks of CML treatment), PaC was observed in eight of 11 (72.7%) CML‐treated versus one of 11 (9.1%) vehicle‐treated [control (Ctr)] mice. RAP delayed PanIN development in Ctr mice but failed to prevent PaC promotion in CML‐treated mice, probably because of competition with soluble RAGE for binding to AGEs and/or compensatory upregulation of the RAGE homologue CD166/ activated leukocyte cell adhesion molecule, which also favoured tumour spread. These findings indicate that AGEs modulate the development and progression of PaC through receptor‐mediated mechanisms, and might be responsible for the additional risk conferred by diabetes and other conditions characterized by increased AGE accumulation. Finally, our data suggest that an AGE reduction strategy, instead of RAGE inhibition, might be suitable for the risk management and prevention of PaC. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.  相似文献   

11.
Understanding RAGE, the receptor for advanced glycation end products   总被引:14,自引:0,他引:14  
Advanced glycation end products (AGEs), S100/calgranulins, HMGB1-proteins, amyloid- peptides, and the family of -sheet fibrils have been shown to contribute to a number of chronic diseases such as diabetes, amyloidoses, inflammatory conditions, and tumors by promoting cellular dysfunction via binding to cellular surface receptors. The receptor for AGEs (RAGE) is a multiligand receptor of the immunoglobulin superfamily of cell surface molecules acting as counter-receptor for these diverse molecules. Engagement of RAGE converts a brief pulse of cellular activation to sustained cellular dysfunction and tissue destruction. The involvement of RAGE in pathophysiologic processes has been demonstrated in murine models of chronic disease using either a receptor decoy such as soluble RAGE (sRAGE), RAGE neutralizing antibodies, or a dominant-negative form of the receptor. Studies with RAGE–/– mice confirmed that RAGE contributes, at least in part, to the development of late diabetic complications, such as neuropathy and nephropathy, macrovascular disease, and chronic inflammation. Furthermore, deletion of RAGE provided protection from the lethal effects of septic shock caused by cecal ligation and puncture (CLP). In contrast, deletion of RAGE had no effect on the host response in delayed-type hypersensitivity (DTH). Despite the lack of effect seen in adaptive immunity by the deletion of RAGE, administration of the receptor decoy, sRAGE, still afforded a protective effect in RAGE–/– mice. Thus, sRAGE is likely to sequester ligands, thereby preventing their interaction with other receptors in addition to RAGE. These data suggest that, just as RAGE is a multiligand receptor, its ligands are also likely to recognize several receptors in mediating their biologic effects.  相似文献   

12.
目的:研究梓醇对晚期糖基化终产物(AGEs)诱导的EA.hy926内皮细胞炎症反应的抑制作用并探讨其可能机制。方法:将常规培养的EA.hy926细胞随机分为对照组、梓醇对照组、AGEs组以及梓醇高剂量(0.5 mmol/L)、中剂量(0.25 mmol/L)和低剂量(0.05 mmol/L)保护组。激光共聚焦显微镜观察细胞内活性氧簇(ROS)的生成;RT-PCR和Western blot检测细胞中单核细胞趋化蛋白1(MCP-1)、肿瘤坏死因子α(TNF-α)、血管细胞黏附分子1(VCAM-1)及晚期糖基化终产物受体(RAGE)的mRNA及蛋白的表达。结果:梓醇保护组ROS生成均明显减少,MCP-1、TNF-α和VCAM-1的mRNA及蛋白表达均显著降低,RAGE蛋白表达明显受抑制,且呈剂量依赖性(P0.05)。结论:梓醇能够有效抑制AGEs诱导的EA.hy926细胞内氧化应激,减轻炎症反应,其机制可能与其降低RAGE表达有关。  相似文献   

13.
14.
This study aimed to investigate whether pitavastatin protected against injury induced by advanced glycation end products products (AGEs) in neonatal rat cardiomyocytes, and to examine the underlying mechanisms. Cardiomyocytes of neonatal rats were incubated for 48 hours with AGEs (100 mg/mL), receptor for advanced glycation end products (RAGE), antibody (1 mg/mL) and pitavastatin (600 ng/mL). The levels of p62 and beclin1 were determined by Western blotting. Mitochondrial membrane potential (DYm) and the generation of reactive oxygen species (ROS) were measured through the JC-1 and DCFH-DA. In the AGEs group, the expression of beclin1 was remarkably increased compared to the control group, while the expression of p62 was significantly decreased. AGEs also markedly decreased DYm and significantly increased ROS compared with the control group. After treatment with RAGE antibody or pitavastatin, the level of beclin1 was markedly decreased compared with the AGEs group, but the level of p62 was remarkably increased. In the AGEs + RAGE antibody group and AGEs + pitavastatin group, DYm was significantly increased and ROS was remarkably decreased compared with the AGEs group. In conclusion, AGEs-RAGE may induce autophagy of cardiomyocytes by generation of ROS and pitavastatin could protect against AGEs-induced injury against cardiomyocytes.  相似文献   

15.
探讨糖尿病大鼠血管组织糖基化终产物(AGEs)含量与其受体(RAGE)和细胞间粘附因子-1(ICAM-1)表达的关系。复制糖尿病大鼠模型,采用荧光法、RT-PCR及原位杂交方法检测主动脉及心肌组织的AGEs含量以及RAGE和ICAM-1基因的表达。发现糖尿病大鼠主动脉和心肌组织AGEs含量升高(P<0.01);RAGE和ICAM-1基因表达增强(P<0.05-0.05);AGEs含量与RAGE及ICAM-1呈明显正相关(P<0.01);氨基胍治疗可缓解上述指标的变化。提示 AGEs可诱导RAGE和ICAM-1的表达。推测AGEs-RAGE相互作用是引起糖尿病血管内皮细胞功能紊乱和损伤的关键环节。  相似文献   

16.
17.
The post-translational modifications of protein molecules include glycation, which may not only occur enzymatically controlled in N and O position, but also wherever proteins meet reducing sugars non-enzymatically in epsilon position at lysines (non-enzymatic (epsilon) glycation (NEG)). The formation of keto-amines from the amine-sugar compounds (Amadori re-arrangement) and further processing of the largely undigestible Amadori compounds eventually results in insoluble advanced glycation end products (AGEs). The latter can induce or favour disease including mental disorders. Preferential targets of NEG include large cell surface proteins. Ample evidence has been provided that NEG also occurs in the brain where cross-linking of epsilon-glycated proteins, induction of oxidative stress and signalling of AGEs through their specific receptor (RAGE) likely play a role in (brain) ageing and Alzheimer disease (AD). This is underscored by the demonstration of particular interactions between AGE/RAGE and amyloid-beta (Abeta) that favour the aggregation and deposition of Abeta and, perhaps, the formation of Abeta itself. The close relationship between NEG and Abeta, as well as other facts foster the hypothesis that NEG of the large trans-membrane amyloid precursor protein (APP) might be a significant factor in the induction of aberrant APP cleavage with production of Abeta, not only in normal ageing, but also in AD. Blockade of lysine cleavage sites on APP by sugar chains or marker effects induced by NEG akin to ubiquitination of proteins for degradation at lysines could be expected to contribute to altered processing of APP. The hypothesis of epsilon-glycation in APP proposed here and the review of evidences for the significance of NEG in brain ageing and AD are aimed at the stimulation of investigations into the still open question which role NEG plays with respect to APP and its abnormal processing in AD. It can be rendered likely that such research might open new avenues towards decreasing the risk of AD and/or slowing its progression through the prevention of NEG in APP with aberrant APP processing, increased generation of Abeta and the formation of AGEs from epsilon-glycated APP.  相似文献   

18.
Advanced glycation end products (AGEs) may be associated with osteoarthritis (OA), because the accumulation of AGEs in articular cartilage are among the most striking age-related changes. AGEs modify the tissue protein structure and function and stimulate the cellular responses mediated by a specific receptor for AGEs (RAGE). This study investigated the localization of AGEs in degenerated cartilage using newly identified epitope-specific antibodies to determine the linkage between the distribution of AGEs and the development and progression of OA. Osteochondral specimens of the tibial plateau from OA patients were immunostained by specific antibodies against N?-(carboxymethyl)lysine (CML), N?-(carboxyethyl)lysine (CEL), pentosidine, GA-pyridine, and RAGE. The immunohistochemical distribution of these epitopes was evaluated during cartilage degeneration. The immunoreactivity (IR) of AGEs and RAGE was stronger in cells rather than in the extracellular matrix. Higher IR of cellular CML and CEL was observed in both mild and severe OA cartilage in comparison to macroscopically intact cartilage. There was a strong association between GA-pyridine and RAGE in the pattern of increasing IR with the OA grade. These IR patterns of AGEs varying with cartilage degeneration indicate that AGE modified proteins are associated with cartilage degeneration. The coincidental up-regulation of GA-pyridine and RAGE suggests that GA-pyridine is the most significant AGE for cartilage degeneration via the RAGE pathway.  相似文献   

19.
目的:探讨晚期糖化终产物(AGEs)与晚期糖化终产物受体(RAGE)结合对Jurkat细胞分泌肿瘤坏死因子-α(TNF-α)的影响及相关信号分子的变化。方法:不同浓度AGEs作用于植物血球凝集素(PHA)预刺激的Jurkat细胞24小时,MTT检测AGEs对细胞生存率的影响,ELISA检测AGEs诱导Jurkat细胞分泌TNF-α;Western blot检测AGEs诱导Jurkat细胞表达RAGE和p38MAPK、JNK磷酸化水平。结果:AGEs作用于PHA预刺激Jurkat细胞24小时对细胞生存率无明显影响;AGEs促进Jurkat细胞表达RAGE,增加炎症因子TNF-α分泌,抗RAGE抗体明显抑制AGEs诱导的TNF-α分泌。AGEs可引起p38MAPK、JNK磷酸化,p38MAPK、JNK的抑制剂明显抑制AGEs诱导的TNF-α表达。结论:AGEs通过RAGE促进PHA预刺激的Jurkat细胞分泌炎症因子TNF-α,其机制与激活p38MAPK、JNK途径有关。  相似文献   

20.
During aging the non-enzymatic glycation of proteins and other molecules increases significantly, leading to the accumulation of advanced glycation end-products (AGEs). These AGEs enhance inflammatory and autoimmune reactions with resultant cytotoxicity. We noted in an earlier study that individuals with Alzheimer’s disease exhibit enhanced expression of the receptor for advanced glycation end-products (RAGE) on the surface of their leukocytes. In order to better understand the relationship between AGEs and the cell surface binding of amyloid-β protein (Aβ) 42 we studied the effect of two AGEs: glycated bovine serum albumin (BSA), and ε-carboxymethyllysine-BSA (CML), a glycoxidation product, on the binding of Aβ42 to rat PC-12 and IMR-32 cells. We measured the expression of three potential cell surface receptors binding Aβ42: RAGE, β-amyloid precursor protein (β-APP), and the α7 subtype of the nicotinic acetylcholine receptor (α7nAChR) by using specific antibody probes. Incubation of PC-12 or IMR-32 cells with bovine serum albumin–advanced glycation end-product (BSA-AGE) or with CML induced small but significant concentration-dependent increases in the expression of β-APP, RAGE, and α7nAChRs as measured by flow cytometry or by ELISA. Incubation of the cells with 48 μM of either of the AGEs combined with varying concentrations (138–1100 nM) of Aβ42 resulted in the enhanced binding of the Aβ42 to the cell surface as compared with cells not exposed to the AGE co-treatment. The combination of AGE and Aβ treatment also resulted in the heightened expression of all three potential Aβ binding sites as well as their gene precursors. Exposure of cells to the same regimen of AGE plus Aβ resulted in the production of reactive oxygen species and mitochondrial toxicity. These results are consistent with the ability of AGEs to enhance the cell surface expression of diverse Aβ42 binding sites, a factor that can lead to the enhanced binding of amyloid and subsequent cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号