首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 929 毫秒
1.
Phencyclidine (PCP) is a psychotomimetic drug associated with acute and delayed mental effects in normal humans and psychosis exacerbation in already psychotic schizophrenic individuals. We have previously described a dose-sensitive, delayed action of PCP on regional cerebral metabolism in the rat which occurs over 48 hours and a late (24 hour) change in N-methyl-d-aspartate (NMDA) and kainate binding in hippocampal areas. Now, we report the complex time course of PCP action on NMDA-sensitive glutamate receptor binding in rat in distinct subregions of the hippocampus extending over 48 hours. Selectively; in the hippocampal CA1 region, a single dose of PCP (8.6 mg/kg) produced an increase in receptor binding at 12 hours (+24%), sustained to 24 hours (+29percnt;) compared with the 3 hour post-PCP value (-15percnt;) and then a return to control levels of receptor binding at 48 hours. Other regions of hippocampus showed distinctive time-dependent changes in NMDA-sensitive glutamate receptor binding as well. In addition, PCP produced a change in kainate receptor binding in the dentate gyrus across the 48-hour time period. In other representative brain regions, PCP did not alter NMDA or kainate binding over the same time course. This extended neurochemical effect of PCP on glutamate receptors in rat hippocampus parallels, in time, certain delayed psychological actions of PCP in humans and thus may be relevant to psychosis, especially to PCP-induced psychosis. © 1996 Wiley-Liss, Inc.  相似文献   

2.
Summary Phencyclidine (PCP) is an antagonist of the NMDA subtype of glutamate receptor. PCP treatment induces psychosis in normal humans, which provides a valuable model of schizophrenia. PCP administration also models some of the symptoms of schizophrenia in experimental animals. NMDA hypofunction has been hypothesized to explain these schizophrenia-like symptoms. Acute or chronic administration of the NMDA receptor antagonist PCP has been shown to induce several short or long-term effects in both humans and experimental animals. In an attempt to clarify the neurochemical substrates of these effects in the present study, we used quantitative autoradiography to examine the effects of chronic (14 days) PCP treatment on NMDA receptor binding in mouse brain following both a short- (1 and 24 h) and long-term (14 days) delay after the last PCP treatment. NMDA receptors were targeted using [3H]MK801. Chronic PCP treatment increased [3H]MK801 binding consistently in the hippocampus in the short-term (p < 0.01). Conversely in the long-term, there were widespread reductions in NMDA receptor binding and this effect was most evident in the hippocampus where a 35% reduction of binding was found (p < 0.001). These results suggest that the hippocampus has a strong involvement in both the short and long-term effects of PCP treatment and that reduced NMDA receptor function might be one of the neurochemical substrates of the long lasting actions of PCP or PCP-induced psychosis. Importantly, this study shows that the long-term delay following chronic PCP treatment more accurately represents a state of NMDA hypofunction than the short-term PCP model.  相似文献   

3.
The mRNA expression pattern for four different immediate early genes was examined dynamically in rat brain after administration of phencyclidine (PCP; 0.86 or 8.6 mg/kg) or MK801 (0.1 or 1.0 mg/kg). Following each treatment, the expression of cfos, cjun, junB, and zif268 mRNA changed distinctively and dynamically between 1 and 48 hours. cfos mRNA was induced in cortical areas at early times after either dose of PCP or of MK801; the change was especially prominent in cingulate and auditory cortices. zif268 mRNA showed an early (1 hour) activation and a delayed (24–48 hour) suppression after PCP and MK801 in neocortical areas. PCP also caused cjun and junB mRNA induction in cortical areas at early times, with a distribution and time course similar to its effects on cfos mRNA. No alterations in cfos, cjun, or junB mRNA were found in neocortical or hippocampal areas at any delayed time (>6 hours) after PCP treatment, whereas suppression of zif268 expression was prominent even at 48 hours post-treatment. CPP, a competitive NMDA antagonist, showed a similar pattern of effects on cfos and zif268 mRNA expression. These functional consequences of a PCP- or MK801-induced reduction in NMDA-sensitive glutamate transmission may be relevant to an understanding of animal NMDA pharmacology and/or to clinical psychotomimetic side effects of antiglutamatergic treatments. Synapse 29:14–28, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

4.
Asenapine, a new pyschopharmacologic agent being developed for the treatment of schizophrenia and bipolar disorder, has a unique human receptor binding signature with strong affinity for dopaminergic, α‐adrenergic, and, in particular, serotonergic receptors raising the possibility of interactions with glutamatergic receptors. Changes in ionotropic glutamate (Glu) N‐methyl‐D ‐aspartic acid (NMDA) receptors and 2‐amino‐3‐(3‐hydroxy‐5‐methyl‐isoxazol‐4‐yl)propionic acid (AMPA) receptors in rat forebrain regions were quantified after repeated administration of multiple doses of asenapine (0.03, 0.1, or 0.3 mg/kg, subcutaneous, twice/day) or vehicle for 4 weeks. Brain sections were collected from the medial prefrontal cortex (mPFC), dorsolateral frontal cortex, caudate putamen (CPu), nucleus accumbens (NAc), and hippocampus (HIP), and processed for in vitro receptor autoradiography. Four weeks of treatment with 0.03, 0.1, or 0.3 mg/kg of asenapine significantly (P < 0.01) decreased binding of [3H]MK‐801 to NMDA/MK‐801 modulatory sites in NAc (by 27%, 29%, and 26%, respectively), medial CPu (by 25%, 28%, and 24%), and lateral CPu (by 24%, 31%, and 26%). In contrast, the same doses of asenapine did not alter binding of [3H]glycine to NMDA/glycine modulatory sites in any of the brain regions examined. [3H]AMPA binding to AMPA receptors was selectively and significantly (P < 0.001) elevated in hippocampal CA1 (41%) and CA3 (40%) regions but only at the highest dose tested. These results indicate that chronic treatment with asenapine has region‐specific and dose‐dependent effects on ionotropic Glu‐receptor subtypes in rat forebrain, which might contribute to the unique psychopharmacologic properties of asenapine. Synapse 63:413–420, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
A possible indirect role of glutamate in causing the neuronal death found after intracerebral administration of a low dose of ouabain (0.1 nmol) has been evaluated. This dose of ouabain produces a more extensive neuronal lesion than those caused by glutamate receptor agonists (kainate at an equimolar dose, or NMDA (N-methyl-d-aspartate) at a 50-fold higher dose). The selective glutamate receptor antagonists, dizocilpine (MK-801) and NBQX (2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline), in doses which blocked the direct toxicity of glutamate receptor agonists acting on either the NMDA and non-NMDA classes of glutamate receptor, failed to provide more than a minor protection against ouabain-induced peuronal death in the rat dorsal hippocampus. In contrast, the non-selective glutamate receptor antagonist, kynurenate (100 nmol) reduced the damage by around 70%. The difference in neuroprotection found between the glutamate receptor antagonists suggests that kynurenate may protect by a non-glutamatergic mechanism. Co-administration of ouabain and glutamate receptor agonists (kainate, NMDA or glutamate) resulted in additive rather than synergistic damage to hippocampal neurons. The results suggest that in vivo, ouabain and excitotoxins probably cause neuronal death by independent mechanisms.  相似文献   

6.
In vitro binding autoradiography was used to examine the pattern and intensity of binding of [3H]glutamate to NMDA receptors, [3H]MK 801 to NMDA receptor associated channels in and [3H]PN-200 110 to L-type calcium channels in the hippocampus of mice aged 3–70 days. The distribution of NMDA receptors and NMDA receptor associated channels was similar but not identical at the tested ages. Beginning with postnatal day 8, high binding levels were confined mostly to the hippocampal strata: the oriens and radiatum (CA1 and CA3 with [3H]MK 801 labeling but only CA1 with NMDA displaced [3H]glutamate labeling), the moleculare (higher labeling with [3H]MK 801 than with NMDA displaced [3H]glutamate binding), and the lucidum. The binding values for NMDA receptor-channel complex rose in the examined period (especially within the second and third week), reaching a plateau at the end of the third postnatal week. Sharp growth of binding within the second and third week of life was about 50% greater with [3H]MK 801 than with NMDA displaced [3H]glutamate labeling. L-type calcium channels were found to be most abundant in the strata: the oriens of the CA3 field, the moleculare, and the lucidum. The time course of binding value changes for the calcium channel was similar to the time course found for the NMDA receptor-channel complex. © 1993 Wiley-Liss, Inc.  相似文献   

7.
Summary Amantadine has been shown to displace [3H]MK 801 from its binding site on the NMDA receptor. We have therefore studied the motor effects of amantadine in normal and 24h reserpine-treated mice to determine whether the behavioural profile of this drug resembles that of other NMDA receptor antagonists (e.g. MK 801). In common with the latter, amantadine (5–40 mg/kg IP) produced a modest dose-dependent sedation in dopamineintact mice, with a reduction in locomotion and other species-typical behaviours (e.g. rearing and grooming), but with no signs of the hyperactivity, stereotypy, ataxia or loss of muscle tone commonly seen with MK 801. Amantadine (5–80 mg/kg IP) effected a small incrase in motility in akinetic reserpine-treated mice by itself, but this response was highly variable and not statistically significant. As with MK 801, amantadine significantly inhibited the locomotion induced by the selective D2 agonist RU 24213 (5 mg/kg SC) and the mixed D1/D2 agonist apomorphine (0.5 mg/kg SC) in monominedepleted mice, without altering the animals' responsiveness to threshold doses of these drugs. However, amantadine did not facilitate the locomotion induced by threshold (3 mg/kg IP) or fully active doses (30 mg/kg IP) of the selective D1 agonist SKF 38393, which distinguishes amantadine from other NMDA receptor blockers. Since the potentiation of dopamine D1-dependent locomotion may be a major factor in the antiparkinson activity of MK 801 and other glutamate receptor antagonists the inability of amantadine to potentiate SKF 38393 in this study suggests the mechanism of its anti-akinetic activity differs, from that of conventional glutamate blocking drugs.  相似文献   

8.
Electrophysiological data suggest that alterations in the function of one glutamate receptor subtype may affect the function of other subtypes. Further, previous studies have demonstrated that NMDA receptor antagonists affect NMDA and kainate receptor expression in rat hippocampus. In order to address the mutual regulation of NMDA, AMPA, and kainate receptor expression in rat hippocampus, we conducted two experiments examining the effects of NMDA and non-NMDA glutamate receptor modulators on NMDA, AMPA, and kainate receptor expression using in situ hybridization and receptor autoradiography. NMDA receptor expression was preferentially affected by systemic treatments, as all drugs significantly altered [(3)H]MK-801 binding, and several drugs increased [(3)H]ifenprodil binding. GYKI52466 and aniracetam treatments resulted in changes in both [(3)H]ifenprodil binding and NR2B mRNA levels, consistent with the association of this subunit and binding site in vitro. There were more modest effects on AMPA and kainate receptor expression, even by direct antagonists. Together, these data suggest that ionotropic glutamate receptors interact at the level of expression. These data also suggest that drug regimens targeting one ionotropic glutamate receptor subtype may indirectly affect other subtypes, potentially producing unwanted side effects.  相似文献   

9.
Objectives: The purpose of this study was to determine whether there are changes in the density of ionotropic glutamate receptors in the hippocampus of subjects with bipolar disorder. Methods: Using in situ radioligand binding with semiquantitative autoradiography, we measured the density of [3H]MK‐801, [3H]CGP39653, [3H]AMPA and [3H]kainate binding in hippocampi, obtained postmortem, from eight subjects with type 1 bipolar disorder and 8 age‐ and sex‐matched controls. Results: In subjects with bipolar disorder there were significant decreases in the density of [3H]MK‐801 binding in the Cornu Ammonis (CA) 3 (mean ± SEM; 108.8 ± 12.2 versus 166.2 ± 18.0 fmol/mg ETE, p < 0.005) as well as the pyramidal (102.8 ± 9.2 versus 136.6 ± 11.2 fmol/mg ETE, p < 0.05) and polymorphic (21.73 ± 6.5 versus 53.26 ± 11.6 fmol/mg ETE, p < 0.05) layers of the subiculum. In addition, two‐way analysis of variance (ANOVA) revealed a decrease in the density of [3H]CGP39653 binding across the hippocampal formation in bipolar subjects, which did not reach significance in any subregion. There were no changes in the densities of [3H]AMPA or [3H]kainate binding in these subjects. Conclusions: [3H]CGP39653 and [3H]MK‐801 bind to the glutamate binding site and open ion channel of the n ‐methyl‐d ‐aspartate (NMDA) receptor, respectively. Therefore, these data suggest that there is a decrease in the number of open ion channels associated with no significant change in the apparent density of NMDA receptors in regions of the hippocampus from subjects with bipolar disorder.  相似文献   

10.
In rats receiving N-methyl-D-aspartate (NMDA) intraventricularly or intracisternally the cerebellar cyclic guanosine monophosphate (cGMP) content increases in a dose-related manner. This response was used to study phencyclidine (PCP) and glycine interactions with the glutamate receptor subtype stimulated by NMDA. The increase of cGMP elicited by NMDA was inhibited by PCP and potentiated by glycine. Moreover, 2-amino-5-phosphonovalerate (APV) abolished the NMDA response. Since the increase in cerebellar cGMP induced by kainate, a synthetic agonist of another glutamate receptor subtype, was not modified by APV, the specificity of its action on NMDA response was confirmed. The increase of cerebellar cGMP content elicited by glycine was inhibited by PCP and APV but not by strychnine. Binding studies failed to demonstrate an apparent competitive interaction between PCP, glycine and NMDA. This suggests that the observed interaction is not of the isosteric type. The present results provide evidence that glycine, in vivo, acting at strychnine-insensitive recognition sites modulates allosterically in a positive manner the function of NMDA-sensitive glutamate receptors.  相似文献   

11.
These studies were conducted to determine whether amygdaloid kindling results in the long-term alteration of NMDA receptors which could explain the persistent reduction in seizure threshold seen in this phenomenon. NMDA-induced [3H]norepinephrine (NE) release, NMDA-sensitive L-[3H]glutamate binding, and NMDA and glycine-enhanced [3H]TCP binding were measured in brain tissue from kindled rats and nonstimulated control rats 3 to 6 weeks after the last seizure. There was no difference in the ability of NMDA to induce [3H]NE release from kindled or control slices of amygdala or hippocampus. There was also no difference in the ability of phencyclidine (PCP) or Mg2+ to inhibit [3H]NE release induced by 100 microM NMDA. Equilibrium saturation experiments of NMDA-sensitive L-[3H]glutamate binding revealed no differences in KD or Bmax values between control and kindled cortex, amygdala, and hippocampus. The Ki values for NMDA displacement of L-[3H]glutamate binding also did not differ in kindled tissue. NMDA-enhanced [3H]TCP binding was similar in cortex, amygdala, and hippocampus of kindled and control tissues. Finally, glycine-enhanced [3H]TCP binding was not different in control or kindled tissues. These studies suggest that the NMDA recognition site and the modulation of the NMDA receptor/ion channel complex by magnesium, PCP, and glycine are not altered several weeks after the last seizure. Even though NMDA-mediated electrophysiological responses are reportedly enhanced in kindled tissue at that time, the mechanism(s) underlying the enhancement remains to be determined.  相似文献   

12.
Day-old domestic chicks ( Gallus domesticus ) were trained on a one-trial passive avoidance task in which the aversive stimulus was an unpleasant tasting substance, methyl anthranilate. Thirty minutes later, localization of N -methyl- d -aspartic acid (NMDA)-sensitive [3H]glutamate receptor binding sites, [3H]MK801 and [3H]AMPA binding sites in 17 regions of the forebrain of methylanthranilate-trained and control (water-trained) chicks was determined using quantitative receptor autoradiography. Significant differences in binding to both MK801- and NMDA-sensitive glutamate receptors, but not α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, were found in three regions of the forebrain of trained compared to control chicks; two of these regions have been implicated from previous lesion, biochemical and morphological studies as playing a key role in the process of memory formation and storage following passive avoidance training. For NMDA-sensitive [3H]glutamate receptors, significant elevations in binding were observed in two regions, the left intermediate and medial hyperstriatum ventrale (IMHV) (39%) and the lobus parolfactorius (LPO) (34%), at 30 min post-training, but a decrease (44%) occurred in binding to the lateral neostriatum. Significant increases in binding to MK801 receptors were observed in the left IMHV (19%) and right IMHV (13%), and left LPO (22%) at 30 min post-training, though there was a decrease in the right LPO (15%). These findings, coupled with those described in a previous paper from our group (Burchuladze and Rose, Eur. J. Neurosci. , 4 , 533–538, 1992), demonstrate that a glutamate receptor subtype is involved in learning and memory formation in the chick.  相似文献   

13.
Exposure of Syrian hamsters to light 1 h after lights-off rapidly (10 min) induced nuclear immunoreactivity (–ir) to the phospho-Ser133 form of the Ca2+/cAMP response element (CRE) binding protein (pCREB) in the retinorecipient zone of the suprachiasmatic nuclei (SCN). Light also induced nuclear Fos-ir in the same region of the SCN after 1 h. The glutamatergic N-methyl- d -aspartate (NMDA) receptor blocker MK801 attenuated the photic induction of both factors. To investigate glutamatergic regulation of pCREB and Fos further, tissue blocks and primary cultures of neonatal hamster SCN were examined by Western blotting and immunocytochemistry in vitro. On Western blots of SCN tissue, the pCREB-ir signal at 45 kDa was enhanced by glutamate or a mixture of glutamatergic agonists (NMDA, amino-methyl proprionic acid (AMPA), and Kainate (KA)), whereas total CREB did not change. Glutamate or the mixture of agonists also induced a 56 kDa band identified as Fos protein in SCN tissue. In dissociated cultures of SCN, glutamate caused a rapid (15 min) induction of nuclear pCREB-ir and Fos-ir (after 60 min) exclusively in neurones, both GABA-ir and others. Treatment with NMDA alone had no effect on pCREB-ir. AMPA alone caused a slight increase in pCREB-ir. However, kainate alone or in combination with NMDA and AMPA induced nuclear pCREB-ir equal to that induced by glutamate. The effects of glutamate on pCREB-ir and Fos-ir were blocked by antagonists of both NMDA (MK801) and AMPA/KA (NBQX) receptors. In the absence of extracellular Mg2+, MK801 blocked glutamatergic induction of Fos-ir. However, the AMPA/KA receptor antagonist was no longer effective at blocking glutamatergic induction of either Fos-ir or pCREB-ir, consistent with the model that glutamate regulates gene expression in the SCN by a co-ordinate action through both NMDA and AMPA/KA receptors. Glutamatergic induction of nuclear pCREB-ir in GABA-ir neurones was blocked by KN-62 an inhibitor of Ca2+/Calmodulin (CaM)-dependent kinases, implicating Ca2+-dependent signalling pathways in the glutamatergic regulation of gene expression in the SCN.  相似文献   

14.
We used quantitative autoradiography to determine whether the development of glutamate receptors correlates with the plastic period for monocular deprivation in rat visual cortex. To study glutamate receptors, we incubated sections of rat visual cortex with tritiated (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]-cyclohepten-5,10imine maleate (MK-801), tritiated kainate, and tritiated amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid (AMPA). [3H]MK-801 is a noncompetitive ligand for the N-methyl-D-aspartate (NMDA) receptor. [3H]kainate and [3H]AMPA are competitive ligands for non-NMDA receptors. To compare glutamate binding sites with a nonglutamate binding site, we studied [3H]muscimol, which binds to γ-aminobutyric acid (GABA)A receptors. [3H]MK-801 binding was maximal at postnatal day 26 (P26) and decreased in adulthood. [3H]AMPA binding was maximal at P18. [3H]kainate binding and [3H]muscimol binding were not age dependent. Dark rearing partially prevented the age-dependent decrease in [3H]MK-801 binding but had no effect on [3H]kainate or [3H]AMPA binding. Dark rearing decreased muscimol binding in adult animals. These results suggest that NMDA receptors, but not other glutamate receptors or GABAA receptors, are likely to be critical for developmental plasticity in rat visual cortex. J. Comp. Neurol. 383:73–81, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

15.
A possible role of the N-methyl-d -aspartate receptor (NMDA-R) as a presynaptic autoreceptor was investigated using Percoll-purified hippocampus nerve terminals (synaptosomes). This preparation contained only a neglectable amount of postsynaptic structures. Two main effects of NMDA were observed. First, NMDA dose-dependently (10–100 μm ) and in the absence of Mg2+, stimulated basal release of aspartate and glutamate, but not of GABA. MK801 (10 μm ), an open NMDA-R-channel blocker, reduced this effect even below control levels, indicating endogenous NMDA-R activation. By superfusing synaptosomes, which prevents a tonic receptor occupation, also basal GABA release was stimulated by NMDA. The NMDA-induced potentiation of amino acid superfusate levels was blocked both by MK801 and Mg2+ (1 m m ), was slow in onset and returned to baseline after NMDA-removal. The NMDA-effect was also found in the absence of extracellular Ca2+, suggesting that amino acids were released from a non-vesicular (cytoplasmic) pool. Secondly, in KCl-depolarized synaptosomes exposed to 1 m m Mg2+, NMDA did not affect the release of the amino acids. MK801, however, reduced the KCl-evoked Ca2+-independent release of aspartate and glutamate, but not of GABA. l -trans-PDC, the selective inhibitor of the glutamate/aspartate transporter, prevented this MK801-effect, suggesting a coupling between NMDA-Rs and these transporters. These data provide evidence for a presynaptic NMDA autoreceptor in rat hippocampus. We speculate on the role of this NMDA-R to depolarize the presynaptic membrane by Na+-entry, which may induce reversal of amino acid transporters and thereby releasing amino acids from a cytoplasmic pool.  相似文献   

16.
The neurotoxic actions of kainate and domoate were studied in cultured murine neocortical neurons at various days in culture and found to be developmentally regulated involving three components of neurotoxicity: (1) toxicity via indirect activation of N‐methyl‐d ‐aspartate (NMDA) receptors, (2) toxicity mediated by α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionate (AMPA) receptors, and (3) toxicity that can be mediated by kainate receptors when desensitization of the receptors is blocked. The indirect action at NMDA receptors was discovered because (5R,10S)‐(+)‐5‐methyl‐10,11‐dihydro‐5H‐dibenzo[a,d]cyclohepten‐5,10‐imine (MK‐801), an NMDA receptor antagonist, was able to block part of the toxicity. The activation of NMDA receptors is most likely a secondary effect resulting from glutamate release upon kainate or domoate stimulation. 1‐(4‐Aminophenyl)‐3‐methylcarbamyl‐4‐methyl‐3,4‐dihydro‐7,8‐ethylenedioxy‐5H‐2,3benzodiazepine (GYKI 53655), a selective AMPA receptor antagonist, abolished the remaining toxicity. These results indicated that kainate‐ and domoate‐mediated toxicity involves both the NMDA and the AMPA receptors. Pretreatment of the cultures with concanavalin A to prevent desensitization of kainate receptors led to an increased neurotoxicity upon stimulation with kainate or domoate. In neurons cultured for 12 days in vitro a small but significant neurotoxic effect was observed when stimulated with agonist in the presence of MK‐801 and GYKI 53655. This indicates that the toxicity is produced by kainate receptors in mature cultures. Examining the subunit expression of the kainate receptor subunits GluR6/7 and KA2 did, however, not reveal any major change during development of the cultures. J. Neurosci. Res. 55:208–217, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

17.
Binding sites for excitatory amino acids have been determined by autoradiographical procedures in the rat hippocampus and striatum during hippocampal kindling. The binding sites measured were the N-methyl-D-aspartate (NMDA)-sensitive sites for L-[3H]glutamate and [3H]MK-801 sites (transmitter recognition site and ion channel of the NMDA receptor, respectively), [3H]alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) sites (quisqualate receptor), [3H]kainate sites (kainate receptor) and NMDA-insensitive sites for L-[3H]glutamate. In general, little change was apparent in the hippocampus or striatum for any of these binding sites when assessed 48 h after attaining stages 1/2, 3 or 5 of kindling. These results suggest that hippocampal kindling does not bring about a change in the excitatory amino acid receptor binding sites examined, and that the appearance of an NMDA receptor-mediated component to synaptic responses in the hippocampus produced by kindling, cannot be explained on this basis.  相似文献   

18.
The N-methyl-D-aspartate (NMDA)-type glutamate receptor was shown to mediate dopamine-induced dynorphin A (Dyn) changes in extrapyramidal and limbic structures. MK801, a potent noncompetitive antagonist of the NMDA receptor, blocked increases in striatal and nigral Dyn content following single and multiple administrations of methamphetamine (METH). Significant attenuation of the METH-induced increases occurred with MK801 doses of 0.1 mg/kg/dose with complete blockade at 2.5 mg/kg/dose. Similar to METH, NMDA itself caused significant increases in striatal and nigral Dyn content. The NMDA-induced increase in striatal Dyn content was blocked by coadministration of an intermediate dose of MK801. The Dyn system associated with the nucleus accumbens responded in a similar manner in that MK801 totally blocked the METH-induced increases; moreover, NMDA elevated the Dyn content in this structure. The inability of MK801 to alter the quinpirole-induced decrease in striatal Dyn content suggests that the NMDA receptor is not involved in the D2 receptor regulation of striatal Dyn systems.  相似文献   

19.
We examined NMDA-sensitive [3H]glutamate, [3H]AMPA, [3H]kainate and metabotropic-sensitive [3H]glutamate binding sites in neostriatum and substantia nigra pars reticulata (SNr) in rats after unilateral 6-hydroxydopamine lesions of the medial forebrain bundle. One week after the lesion, NMDA, AMPA, kainate and metabotropic receptors were decreased in the ipsilateral neostriatum, whereas at three months NMDA receptors were increased while AMPA, kainate and metabotropic receptors were not changed. In the SNr at one week, only AMPA and metabotropic receptors were significantly decreased whereas three months after the lesion NMDA, AMPA and kainate binding sites were decreased. The early decrease of excitatory amino acid receptors in the striatum is likely to reflect degeneration of dopaminergic fibers, suggesting that specific subpopulations of excitatory amino acid binding sites are located on dopaminergic terminals.  相似文献   

20.
We investigated the roles of kainate-, α-amino-3-hydroxy-5-methylisoxazol-4-propionate (AMPA)- and N-methyl- -aspartate (NMDA)-receptors in mediating striatal kainate injection-induced decrease in the binding of acetylcholine M1 receptors in rat forebrain. After unilateral intrastriatal injection of kainate (4 nmol), the bindings of [3H]kainate (10 nM), [3H]MK-801 (4 nM) and [3H]pirenzepine (4 nM) to the rat ipsilateral forebrain membranes declined, reaching the lowest on day 2 to 4 and recovering on day 8. Saturation binding studies, performed on day 2 post-injection, showed that kainate (1, 2, 4 nmol) dose-dependently decreased Bmax and Kd of the three ligands. (+)-5-Methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine (MK-801), a selective NMDA receptor channel blocker, antagonised (from a dose of 4 nmol) kainate-induced decreases in the bindings of [3H]kainate (up to 20%), [3H]MK-801 (up to 90%) and [3H]pirenzepine (up to 70%). In contrast, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), a selective non-NMDA receptor antagonist, almost completely abolished (from a dose of 12 nmol) kainate-induced decreases in the bindings of all the three ligands (up to 95–98%). Cyclothiazide, a selective potentiator that enhances AMPA receptor-mediated responses, significantly enhanced (from a dose of 4 nmol) kainate-induced decrease in the binding of [3H]kainate but not that of [3H]pirenzepine or [3H]MK-801. In summary, these results indicate that striatal kainate injection-induced decrease in the binding of acetylcholine M1 receptors in rat forebrain is dependent on activation of kainate receptors and, to a certain extent, a consequent involvement of NMDA receptors. These and previous studies provide some evidence showing that kainate receptors might play a crucial role in regulating excitatory amino acids (EAA)-modulated cholinergic neurotransmission in the central nervous system (CNS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号