首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Apoptosis induced by docetaxel that interferes with microtubule polymerization dynamics and is used clinically to treat advanced cancers, has not been fully defined in squamous cell carcinoma. In this study, apoptotic events involved in docetaxel treatment were investigated. When the human oral squamous cell carcinoma cell line HSC-3 was exposed to docetaxel for 72 h, a dose-dependent effect was observed in apoptosis using the TUNEL method. We observed activation of caspase cascade including activities like caspase-3, -8, and -9. And the pan-caspase inhibitor z-VAD-fmk prevented apoptosis induced by docetaxel (0.1 microM), showing participation of caspases in this process. Since an antagonistic CD95-antibody (ZB4) exerted no effect on docetaxel-induced apoptosis, CD95/CD95L interaction was not involved in this pathway. The caspase-8-like activity was inhibited not only by IETD-fmk (caspase-8) but also by DEVD-fmk (caspase-3). The results indicate that the caspase-8-like activation occurred downstream of DEVDase. Docetaxel promoted the formation of reactive oxygen species (ROS) in mitochondria, and preincubation of cells with anti-oxidants such as N-acetyl cysteine and pyrrolidine dithiocarbamate, protected against apoptosis mediated by docetaxel. Furthermore, treatment with docetaxel elicited reduction of mitochondrial membrane potential, and release of cytochrome c to cytosol, after 48 h of treatment. We observed binding activity to NF-kappaB consensus site and interference with the mitochondrial function via NF-kappaB after docetaxel treatment. Preventing pro-apoptotic property of NF-kappaB inhibited docetaxel-induced apoptosis. Thus, these results suggest that, following the activation of NF-kappaB by docetaxel, apoptosis is elicited through a mitochondria-dependent pathway.  相似文献   

2.
The B subunit of Escherichia coli heat-labile enterotoxin (EtxB) is a potent immunomodulatory molecule capable of treating and preventing autoimmune disease. These properties result from its ability to bind to glycolipid receptors, principally G(M1) ganglioside, and modulate immune cell function. EtxB receptor binding causes B cell activation, modulates monocyte cytokine secretion and triggers apoptosis of CD8+ T cells. These wide-ranging effects suggest that B subunit receptor interaction triggers signaling events affecting cellular differentiation. We have investigated the processes by which EtxB induces CD8+ T cell apoptosis. We show that receptor interaction by EtxB activates caspase-3 in CD8+ but not in CD4+ T cells. Inhibition of caspase-3 blocks the apoptotic process. EtxB induces the activation of NF-kappaB in both CD8+ and CD4+ T cells. The findings that (i) SN50, a peptide inhibitor of NF-kappaB nuclear translocation, prevents caspase-3 activation and subsequent apoptosis, and (ii) CD8+CD4- thymocytes from transgenic mice expressing a dominant-negative form of the IkappaBalpha protein were markedly less susceptible to EtxB-induced apoptosis than cells from wild-type mice, indicate that NF-kappaB is important in the induction of the apoptotic pathway. Further investigations revealed that while caspase-8 activity is detected concomitant to caspase-3, caspase-9 activation, following mitochondrial cytochrome c release, is detectable later on. These observations are consistent with death receptor-mediated signaling, however, experiments using lpr/lpr and p55 TNFR -/- mice rule out the involvement of Fas and the p55 TNF receptor, respectively. The data therefore indicate that EtxB-mediated apoptosis occurs via a novel pathway involving NF-kappaB.  相似文献   

3.
Accumulating evidence suggests that macrophages function as major effector cells in the pathological process of various human diseases. We examined here the role of nuclear factor-kappaB (NF-kappaB) and caspases in the regulation of activation and apoptosis of macrophages. Activation of the human monoblastic leukaemia cell line, U937, by phorbol 12-myristate 13-acetate (PMA) increased the expression of CD14/CD86, and cytokine production. PMA stimulation also increased the expression of both pro-caspase-8 and pro-caspase-3 in U937, but not apoptosis or intracellular caspase-3 activity. PMA also increased the expression of X-chromosome-linked inhibitor of apoptosis protein (XIAP) in U937, suggesting an inhibitory action for XIAP on the caspase cascade in PMA-stimulated U937. Electrophoretic mobility shift assay (EMSA) showed a significant increase of nuclear NF-kappaB activity in PMA-stimulated U937. When a potent NF-kappaB inhibitor, pyrrolidine dithiocarbamate (PDTC), was added to U937 cell culture in the presence of PMA, apoptosis was triggered by activation of caspase-3, which was induced by caspase-8 activation. XIAP expression was markedly suppressed in PMA-treated U937 in the presence of PDTC. The inhibitors of caspase-8 and caspase-3 mostly inhibited apoptosis of U937 treated with PMA in the presence of PDTC. Furthermore, a phenotype of U937 treated with PMA and PDTC in the presence of caspase inhibitor was almost identical to that of unstimulated U937. Our results suggest that the signalling pathways involved in the activation and apoptosis of human macrophages could be co-operatively regulated by the use of NF-kappaB and caspase inhibitors, thus enabling the control of macrophage function and number.  相似文献   

4.
Retinal microvascular cell loss plays a critical role in the pathogenesis of diabetic retinopathy. To examine this further, type 1 streptozotocin-induced diabetic rats and type 2 Zucker diabetic fatty rats were treated by intravitreal injection of the tumor necrosis factor-specific inhibitor pegsunercept, and the impact was measured by analysis of retinal trypsin digests. For type 2 diabetic rats, the number of endothelial cells and pericytes positive for diabetes-enhanced activated caspase-3 decreased by 81% and 86%, respectively, when treated with pegsunercept (P < 0.05). Similarly, the number of diabetes-enhanced terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive endothelial cells and pericytes decreased by 81% and 67% respectively when treated with pegsunercept (P < 0.05). Diabetes-increased activated caspase-3- and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive microvascular cell numbers were both reduced by 81% and 80%, respectively, in pegsunercept-treated type 1 diabetic rats (P < 0.05). Inhibition of tumor necrosis factor reduced type 1 diabetes-enhanced pericyte ghost formation by 87% and the number of type 2 diabetes-enhanced pericyte ghosts by 62% (P < 0.05). Similarly, increased acellular capillary formation caused by type 1 and type 2 diabetes was reduced by 68% and 67%, respectively, when treated with pegsunercept (P < 0.05). These results demonstrate a previously unrecognized role of tumor necrosis factor-alpha in promoting the early pathogenesis of diabetic retinopathy leading to loss of retinal microvascular cells and demonstrate the potential therapeutic benefit of modulating its activity.  相似文献   

5.
Triptolide, a major active component extracted from the root of Tripterygium wilfordii Hook f, has been shown to possess potent immunosuppressive and anti-inflammatory properties. In the present report, we reported that triptolide increased the generation of reactive oxygen species (ROS) and nitric oxide (NO) and induced apoptosis of RAW 264.7 cells in a dose-dependent manner (5-25 ng/ml). The antioxidant, reduced glutathione (GSH), significantly inhibited triptolide-induced apoptosis and inhibited the degradation of Bcl-2 protein, disruption of mitochondrial membrane potential, release of cytochrome c from mitochondria into the cytosol, activation of caspase-3, and cleavage of poly-(ADP-ribose)-polymerase. The inducible nitric oxide synthase-specific inhibitor 1400w blocked triptolide-induced apoptosis, but did not alter mitochondria disruption and caspase-3 activation. These results, for the first time, implicated that the increased endogenous ROS and NO co-mediated triptolide-induced apoptosis in macrophages. ROS initiated triptolide-induced apoptosis by the mitochondria signal pathway, while the apoptotic cell death mediated by NO was not via mitochondria collapse and caspase-3 activation. In addition, combining mathematical calculation and computer simulation based on our conventional experimental results, we set and validated the apoptotic model and provided more dynamic processes of triptolide-induced apoptotic cascade in macrophages.  相似文献   

6.
Dysfunction and loss of human retinal pigment epithelial (HRPE) cells is a significant component of many ocular diseases, in which mononuclear phagocyte infiltration at the HRPE-related interface is also observed. In this study, we investigated whether HRPE cell apoptosis may be induced by overlay of IFN-gamma-activated monocytes. Human monocytes primed with IFN-gamma overlaid directly onto HRPE cells elicited significant increases in terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-positive HRPE cells (p < 0.0001) and decreases of proliferating cell nuclear antigen-positive (p < 0.0001) HRPE cells. The activated monocytes also induced HRPE cell caspase-3 activation, which was inhibited by the caspase-3 inhibitor, Z-DEVD-fmk. However, co-incubations in which activated monocytes were prevented from direct contact with HRPE cells or in which the monocytes were separated from the HRPE cells after 30 minutes of direct contact, did not induce significant HRPE cell apoptosis. Function-blocking anti-CD18 and anti-intercellular adhesion molecule-1 (ICAM-1) antibodies significantly reduced activated monocyte-induced TUNEL-positive HRPE cells by 48% (p = 0.0051) and 38% (p = 0.046), respectively. Anti-CD18 and anti-ICAM-1 antibodies significantly inhibited caspase-3 activity by 56% (p < 0.0001) and 45% (p < 0.0001), respectively. However, antibodies to vascular cell adhesion molecule-1, TNF-alpha, IL-1beta, or TNF-related apoptosis-inducing ligand did not inhibit apoptosis or caspase-3 activation. Direct overlay of monocytes also induced reactive oxygen metabolites (ROM) within HRPE cells. The intracellular HRPE cell ROM production was inhibited by the anti-CD18 and anti-ICAM-1 antibodies, but not by superoxide dismutase, presumably due to its failure to penetrate into HRPE cells. Accordingly, neither superoxide dismutase nor N(G)-monomethyl-L-arginine had significant effects on HRPE cell apoptosis or caspase-3 activation. Our results suggest that activated monocytes may induce ROM in HRPE cells through cell-to-cell contact, in part via CD18 and ICAM-1, and promote HRPE cell apoptosis. These mechanisms may compromise HRPE cell function and survival in a variety of retinal diseases.  相似文献   

7.
Pigment epithelium-derived factor (PEDF) is a natural extracellular component of the retina with neuronal differentiating activity. Decreased levels of PEDF in the mammalian eye have been shown to participate in proliferative diabetic retinopathy. In addition, we have recently found in in vitro experiments that PEDF protected against pericyte apoptosis, the earliest histopathological hallmark of diabetic retinopathy. These observations suggest that the loss of PEDF in the mammalian eye plays an important role in the development and progression of diabetic retinopathy. However, the functional role of endothelial cell (EC)-derived PEDF in pericyte survival and the regulation of PEDF gene expression remain to be elucidated. In this study, we examined the effects of anti-PEDF antibody (Ab) on the viable cell number of cocultured pericytes with microvascular ECs. We further studied the effects of angiotensin II (Ang II) on PEDF gene expression in ECs. Anti-PEDF Ab significantly inhibited the growth-stimulating effects of cocultured ECs on pericytes. Furthermore, Ang II significantly decreased PEDF mRNA levels in ECs, which was completely reversed by an Ang II type 1 receptor blocker, telmisartan. Our present results suggest that PEDF is an EC-derived mitogen or survival factor for retinal pericytes. Suppression by Ang II of the EC-derived PEDF may be involved in exacerbation of diabetic retinopathy in patients with hypertension.  相似文献   

8.
Angiogenesis is the process by which new vascular networks are formed from preexisting capillaries. The small vessels are composed of two types of cells, namely endothelial cells (EC) and pericytes, with the former being encircled by the latter. We previously showed that hypoxia, the principal cause of angiogenesis, can induce the proliferation of pericytes as well as EC. In this report we present evidence that the hypoxic induction of pericyte growth can be ascribed at least in part to vascular endothelial growth factor (VEGF) produced by this very cell type. First, the finding that hypoxia can stimulate the proliferation of pericytes was confirmed by cultivating bovine retinal pericytes in a controlled-atmosphere culture chamber containing various concentrations of oxygen and then assaying pericyte synthesis of DNA. Second, Northern blot analysis revealed that pericyte levels of mRNA encoding VEGF increased as the atmospheric oxygen tension was decreased; this was accompanied by an increase in de novo synthesis of VEGF proteins. Third, pericytes were able to respond to exogenously added VEGF, resulting in a dose-dependent increase in viable cell numbers. Fourth, polyclonal antibodies against VEGF efficiently blocked the hypoxic induction of pericyte growth. Fifth, pericytes expressed the gene for fms-like tyrosine kinase 1 (flt1) as the predominant form of VEGF receptor, and tyrosine phosphorylation of this receptor protein was enhanced when pericytes were exposed to hypoxia, as it was when cells were exposed to VEGF. Sixth, the antisense DNA complement of flt1 mRNA abolished the hypoxia-induced stimulation of pericyte growth. Finally, exogenous VEGF stimulated the migration of pericytes in a dose-dependent manner. The results thus suggest that VEGF, which has been thought to be a specific mitogen for EC, also acts on neighboring pericytes, probably in both autocrine and paracrine manners, and that the hypoxia-induced overproduction of VEGF could promote not only EC sprouting but also the recruitment of pericytes, thereby contributing to the maturation of newly formed microvessels.  相似文献   

9.
Platelet-derived growth factor-BB (PDGF-BB) is a potent mitogen and chemoattractant for microvascular endothelial cells and glial cells in the retina and is thus involved in the development of proliferative diabetic retinopathy. However, relatively little is known about the regulation of PDGF-B gene expression in retinal cells. In this study, we cloned partial complementary DNAs (cDNAs) encoding bovine PDGF-B and examined the effects of angiotensin II (Ang II), which is also implicated in the pathogenesis of diabetic retinopathy, on PDGF-B gene expression in bovine cultured retinal pericytes. Ang II was found to up-regulate PDGF-B messenger RNA (mRNA) levels in bovine retinal pericytes. Telmisartan, a newly developed Ang II type 1 receptor antagonist, or an antioxidant N-acetylcysteine significantly inhibited PDGF-B gene induction in Ang II-exposed pericytes. The present results suggest that Ang II-type 1 receptor interaction could stimulate PDGF-B gene expression in cultured retinal pericytes through intracellular reactive oxygen species generation and could thus be involved in the progression of diabetic retinopathy.  相似文献   

10.
We investigated whether inhibition of platelet-derived growth factor (PDGF) receptor tyrosine kinase activity would affect pericyte viability, vascular endothelial growth factor (VEGF)/vascular endothelial growth factor receptor-2 (VEGFR-2) expression and angiogenesis in a model of retinopathy of prematurity (ROP). ROP was induced in Sprague Dawley rats by exposure to 80% oxygen from postnatal (P) days 0 to 11 (with 3 hours/day in room air), and then room air from P12-18 (angiogenesis period). Shams were neonatal rats in room air from P0-18. STI571, a potent inhibitor of PDGF receptor tyrosine kinase, was administered from P12-18 at 50 or 100 mg/kg/day intraperitoneal (i.p.). Electron microscopy revealed that pericytes in the inner retina of both sham and ROP rats appeared normal; however STI571 induced a selective pericyte and vascular smooth muscle degeneration. Immunolabeling for caspase-3 and alpha-smooth muscle cell actin in consecutive paraffin sections of retinas confirmed that these degenerating cells were apoptotic pericytes. In all groups, VEGF and VEGFR-2 gene expression was located in ganglion cells, the inner nuclear layer, and retinal pigment epithelium. ROP was associated with an increase in both VEGF and VEGFR-2 gene expression and blood vessel profiles in the inner retina compared to sham rats. STI571 at both doses increased VEGF and VEGFR-2 mRNA and exacerbated angiogenesis in ROP rats, and in sham rats at 100 mg/kg/day. In conclusion, PDGF is required for pericyte viability and the subsequent prevention of VEGF/VEGFR-2 overexpression and angiogenesis in ROP.  相似文献   

11.
This study was conducted to determine the perivascular cell responses to increased endothelial cell expression of insulin-like growth factor binding protein-3 (IGFBP-3) in mouse retina. The contribution of bone marrow cells in the IGFBP-3-mediated response was examined using green fluorescent protein-positive (GFP(+)) adult chimeric mice subjected to laser-induced retinal vessel occlusion injury. Intravitreal injection of an endothelial-specific IGFBP-3-expressing plasmid resulted in increased differentiation of GFP(+) hematopoietic stem cells (HSCs) into pericytes and astrocytes as determined by immunohistochemical analysis. Administration of IGFBP-3 plasmid to mouse pups that underwent the oxygen-induced retinopathy model resulted in increased pericyte ensheathment and reduced pericyte apoptosis in the developing retina. Increased IGFBP-3 expression reduced the number of activated microglial cells and decreased apoptosis of neuronal cells in the oxygen-induced retinopathy model. In summary, IGFBP-3 increased differentiation of GFP(+) HSCs into pericytes and astrocytes while increasing vascular ensheathment of pericytes and decreasing apoptosis of pericytes and retinal neurons. All of these cytoprotective effects exhibited by IGFBP-3 overexpression can result in a more stable retinal vascular bed. Thus, endothelial expression of IGFBP-3 may represent a physiologic response to injury and may represent a therapeutic strategy for the treatment of ischemic vascular eye diseases, such as diabetic retinopathy and retinopathy of prematurity.  相似文献   

12.
Leptin, a circulating hormone secreted mainly from adipose tissues, is involved in the control of body weight. Recently, leptin was found to be an angiogenic factor and its vitreous levels were shown to be elevated in patients with angiogenic eye diseases such as proliferative diabetic retinopathy. However, the role of leptin in diabetic retinopathy is not fully understood. Since pericyte loss and dysfunction have been considered to be one of the characteristic changes of the early phases of diabetic retinopathy, we investigated the effects of leptin on the growth and function of bovine cultured retinal pericytes. Although it did not affect cell growth, leptin significantly up-regulated pericyte messenger ribonucleic acid levels of an endogenous angiogenic stimulator, vascular endothelial growth factor (VEGF). Leptin was also found to significantly inhibit gene expression of pigment epithelium-derived factor (PEDF), the most potent angiogenesis inhibitor in the mammalian eye, in pericytes. The present study suggests that leptin might elicit angiogenesis through VEGF induction as well as PEDF suppression in pericytes and could thus be involved in the development and progression of diabetic retinopathy, especially in obese insulin-resistant patients.  相似文献   

13.
14.
GP7 (4-[4"-(2",2",6",6"-tetramethyl-l"-piperidinyloxy)amino]-4'-demethyl epipodophyllotoxin), a new spin-labeled derivative of podophyllotoxin, is a promising anticancer drug of podophyllotoxin class. The primary effect of GP7 is the anticancer activity on transplanted mouse tumors and cultured tumor cells. However, its molecular mechanism of action is still obscure. In this study, we investigated the activity of GP7 to induce apoptosis in human leukemia HL-60 and Jurkat cells. Apoptosis was determined by detection of DNA fragmentation in agarose gel electrophoresis. GP7 induced apoptotic DNA fragmentation of HL-60 and Jurkat cells in time- and dose-dependent manner. We further investigated the activity of caspase-3 in GP7-induced apoptotic DNA fragmentation of HL-60 and Jurkat cells. GP7 also induced time- and dose-dependent caspase-3 activation in both cell lines, and the kinetics of caspase-3 activation induced by GP7 was well correlated with that of apoptotic DNA fragmentation. To determine the role of caspase-3 in GP7-induced apoptotic DNA fragmentation, we examined the effect of specific caspase-3 inhibitor, Ac-DEVD-CHO, on GP7-induced apoptotic DNA fragmentation. Ac-DEVD-CHO prevented GP7-induced caspase-3 activation in both HL-60 and Jurkat cells, however, it only inhibited GP7-induced apoptotic internucleosomal DNA fragmentation in HL-60 cells. We then employed L-carnitine to investigate the role of caspase-3 in GP7-induced apoptotic DNA fragmentation. L-carnitine treatment prevented GP7-induced caspase-3 activation in both cell lines in a dose-dependent manner. Similar to Ac-DEVD-CHO, L-carnitine only inhibited GP7-induced apoptotic internucleosomal DNA fragmentation in HL-60 cells. These findings suggest that GP7 exerts an anti-leukemic effect by both caspase-3-dependent and -independent apoptotic signaling pathways.  相似文献   

15.
Chen D  Texada DE  Duggan C  Deng Y  Redens TB  Langford MP 《Virology》2006,347(2):307-322
Enterovirus 70 (EV70) is the major etiological agent of acute hemorrhagic conjunctivitis (AHC). EV70 m.o.i.- (multiplicity of infection) and time-dependently induced apoptosis in human Chang's conjunctival (HCC) cells. UV- or heat-inactivated EV70 did not induce apoptosis. EV70-induced apoptosis was inhibited by cycloheximide and methoxysuccinyl-Ala-Ala-Pro-Val-chloromethylketone (MPCMK), but not actinomycin D and guanidine.HCl (although guanidine.HCl inhibited the apoptosis induced by EV70 infection at 0.5 PFU/cell for 18 h). EV70 infection induced activation of caspase-3 and -7 and degradation of the constitutively activated caspase-6. EV70-induced apoptotic DNA ladders and activated caspase-3 and -7, correlated with virus release. Caspase inhibitor IX (Z-VD-FMK) inhibited EV70-induced apoptosis and virus release, but not intracellular viral production. The results suggest that infectious virus and the syntheses of viral proteins especially EV70 proteases, but not viral genome RNA, are required for caspase-3 and -7-mediated EV70-induced apoptosis, and that apoptosis through cell lysis promotes EV70 release from HCC cells.  相似文献   

16.
This study was aimed at evaluating the potent and specific aldose reductase inhibitor fidarestat, on diabetes-associated cataract formation, and retinal oxidative-nitrosative stress, glial activation, and apoptosis. Control and streptozotocin-diabetic rats were treated with or without fidarestat (16 mg kg(-1)d(-1)) for 10 weeks after an initial 2-week period without treatment. Lens changes were evaluated by indirect ophthalmoscopy and portable slit lamp. Nitrotyrosine, poly(ADP-ribose), and glial fibrillary acidic protein expression were assessed by immunohistochemistry. The rate of apoptosis was quantified in flat-mounted retinas by TUNEL assay with immunoperoxidase staining. To dissect the effects of high glucose exposure in retinal microvascular cells, primary bovine retinal pericytes and endothelial cells were cultured in 5 or 30 mM glucose, with or without fidarestat (10 microM) for 3-14 days. Apoptosis was assessed by TUNEL assay, nitrotyrosine and poly(ADP-ribose) by immunocytochemistry, and Bax and Bcl-2 expression by Western blot analyses. Fidarestat treatment prevented diabetic cataract formation and counteracted retinal nitrosative stress, and poly(ADP-ribose) polymerase activation, as well as glial activation. The number of TUNEL-positive nuclei (mean +/- SEM) was increased approximately 4-fold in diabetic rats vs. controls (207+/-33 vs. 49+/-4, p<0.01), and this increase was partially prevented by fidarestat (106+/-34, p<0.05 vs. untreated diabetic group). The apoptotic cell number increased with the prolongation of exposure of both pericytes and endothelial cells to high glucose levels. Fidarestat counteracted nitrotyrosine and poly(ADP-ribose) accumulation and apoptosis in both cell types. Antiapoptotic effect of fidarestat in high glucose-exposed retinal pericytes was not associated with the inhibition of Bax or increase in Bcl-2 expression. In conclusion, the findings, i) support an important role for aldose reductase in diabetes-associated cataract formation, and retinal oxidative-nitrosative stress, glial activation, and apoptosis, and ii) provide a rationale for the development of aldose reductase inhibitors, and, in particular, fidarestat, for the prevention and treatment of diabetic ocular complications.  相似文献   

17.
18.
Human peripheral blood monocytes become apoptotic following phagocytosis and killing of Staphylococcus aureus. Although this type of monocyte apoptosis is known to be initiated by Fas-Fas ligand (FasL) interactions, the downstream signaling pathway has not been determined. In this work the involvement of mitochondria and the kinetics of caspase-8 and caspase-3 activation after phagocytosis of S. aureus were studied. Caspase-8 activity was measured in cell lysates by using the fluorogenic substrate Ac-IETD-AFC. Active caspase-3 levels and mitochondrial membrane potential (Deltapsi(m)) were measured in whole cells by flow cytometry using monoclonal antibodies reacting with activated caspase-3 and chloromethyl-X-rosamine, respectively. The results show that caspase-8 was activated shortly after phagocytosis of bacteria. Caspase-8 activation was followed by progressive disruption of Deltapsi(m), which is associated with the production of reactive oxygen intermediates. The irreversible caspase-8 inhibitor zIETD-FMK prevented the disruption of Deltapsi(m) and the release of cytochrome c from S. aureus-exposed monocytes. Caspase-3 activation occurred following disruption of Deltapsi(m). These results strongly suggest that apoptosis of monocytes that have phagocytosed and killed S. aureus is driven by the Fas-FasL-initiated pathway, which is typical for type II cells.  相似文献   

19.
We previously reported that dieldrin, one of the potential environmental risk factors for development of Parkinson's disease, induces apoptosis in dopaminergic cells by generating oxidative stress. Here, we demonstrate that the caspase-3-dependent proteolytic activation of protein kinase Cdelta (PKCdelta) mediates as well as regulates the dieldrin-induced apoptotic cascade in dopaminergic cells. Exposure of PC12 cells to dieldrin (100-300 microM) results in the rapid release of cytochrome C, followed by the activation of caspase-9 and caspase-3 in a time- and dose-dependent manner. The superoxide dismutase mimetic Mn(III)tetrakis(4-benzoic acid)porphyrin chloride significantly attenuates dieldrin-induced cytochrome C release, indicating that reactive oxygen species may contribute to the activation of pro-apoptotic factors. Interestingly, dieldrin proteolytically cleaves native PKCdelta into a 41 kDa catalytic subunit and a 38 kDa regulatory subunit to activate the kinase. The dieldrin-induced proteolytic cleavage of PKCdelta and induction of kinase activity are completely inhibited by pretreatment with 50-100 microM concentrations of the caspase inhibitors benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (Z-VAD-FMK) and benzyloxycarbonyl-Asp-Glu-Val-Asp-fluoromethylketone (Z-DEVD-FMK), indicating that the proteolytic activation of PKCdelta is caspase-3-dependent. Additionally, Z-VAD-FMK, Z-DEVD-FMK or the PKCdelta specific inhibitor rottlerin almost completely block dieldrin-induced DNA fragmentation. Because dieldrin dramatically increases (40-80-fold) caspase-3 activity, we examined whether proteolytically activated PKCdelta amplifies caspase-3 via positive feedback activation. The PKCdelta inhibitor rottlerin (3-20 microM) dose-dependently attenuates dieldrin-induced caspase-3 activity, suggesting positive feedback activation of caspase-3 by PKCdelta. Indeed, delivery of catalytically active recombinant PKCdelta via a protein delivery system significantly activates caspase-3 in PC12 cells. Finally, overexpression of the kinase-inactive PKCdelta(K376R) mutant in rat mesencephalic dopaminergic neuronal cells attenuates dieldrin-induced caspase-3 activity and DNA fragmentation, further confirming the pro-apoptotic function of PKCdelta in dopaminergic cells. Together, we conclude that caspase-3-dependent proteolytic activation of PKCdelta is a critical event in dieldrin-induced apoptotic cell death in dopaminergic cells.  相似文献   

20.
Guo YX  Wei T  Dallmann K  Kwang J 《Virology》2003,308(1):74-82
Betanodaviruses, members of the Nodaviridae family, are the causative agents of viral nervous necrosis in fish and infection by which cause high mortality in larvae and juveniles in a wide range of marine fish species in Asia, Europe, Australia, Martinique, and Tahit. Greasy grouper (Epinephelus tauvina) nervous necrosis viruses (GGNNV) were investigated for their apoptotic activity in culture cells. GGNNV infection of sea bass (SB) cells appeared to induce a typical cytopathic effect (CPE), i.e., cytoplasmic vacuolation, thinning, rounding up, detachment of infected cells from the cultured dish, and eventually cell lysis and death. The infected SB cells underwent DNA fragmentation and stained positive in terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL) assay, suggesting that GGNNV infection induced apoptosis in SB cells. In addition, GGNNV-infected SB cells showed an increased activity of caspase-8-like proteases (IETDase) and caspase-3-like proteases (IETDase), whereas inhibitor of caspase-8 and caspase-3 reduced GGNNV-induced apoptosis. This suggests that GGNNV may promote apoptosis via the extrinsic pathway in SB cells. Protein alpha, the precursor of GGNNV capsid proteins, was transiently expressed in SB and Cos-7 cells. The DNA fragmentation and TUNEL positive signal were apparent in SB and Cos-7 cells expressing protein alpha, suggesting that protein alpha may serve as an apoptotic inducer in these cells. Moreover, expression of protein alpha resulted in the activation of caspase-3-like proteases in both cells, which could be inhibited by a caspase-3-like protease specific inhibitor DEVD-CHO peptide. These results suggest that fish caspases are important elements in GGNNV-meditated apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号