首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的:研究环靶明(cyclopamine)抑制Sonic Hedgehog(SHH)信号通路后,转染LKB1基因的乳癌细胞的凋亡、周期及信号通路相关基因表达的改变。方法:抑癌基因LKB1转染人乳腺癌细胞MDA-MB-231,分MDA-MB-231组(231组)和转染LKB1基因的MDA-MB-231(LKB1组)两组,每组分别采用0,5×10-6mol/L,10×10-6mol/L,20×10-6mol/L 4种浓度的环靶明处理细胞,各小组细胞分别采用流式细胞仪检测细胞凋亡和周期,用RT-PCR法和Western blot法检测Sonic Hedgehog信号通路相关基因Shh、Smo、Ptch、Sufu、Hip及LKB1的mRNA和蛋白表达水平。结果 :在LKB1组和231组中,各小组细胞的凋亡率变化与Sonic Hedgehog相关基因Shh、Smo表达变化一致,随环靶明浓度增大凋亡率增加、基因表达受抑制,在环靶明浓度达10×10-6mol/L时变化最明显,且LKB1组较231组的变化更为明显。在231组中,各小组细胞周期变化与Sonic Hedgehog相关抑制基因Sufu、Hip表达变化一致。而在LKB1组中,各小组细胞周期与抑制基因Sufu、Hip表达变化均无明显差异。在231组中,各小组抑癌基因LKB1的表达随药物浓度增加渐增强。Ptch表达在两组均无明显变化。结论 :抑癌基因LKB1可协同Sonic Hedgehog信号通路抑制剂环靶明促进乳腺癌细胞凋亡,调控细胞周期,推测其机制可能是通过如上信号通路相关基因表达变化而实现。信号通路抑制剂环靶明可提高乳腺癌细胞抑癌基因LKB1的表达,推测此也是信号通路抑制剂降低癌细胞活性机制之一。  相似文献   

2.
3.
A BAC located in the 16q24.3 breast cancer loss of heterozygosity region was previously shown to restore cellular senescence when transferred into breast tumor cell lines. We have shown that FBXO31, although located just distal to this BAC, can induce cellular senescence in the breast cancer cell line MCF-7 and is the likely candidate senescence gene. FBXO31 has properties consistent with a tumor suppressor, because ectopic expression of FBXO31 in two breast cancer cell lines inhibited colony growth on plastic and inhibited cell proliferation in the MCF-7 cell line. In addition, compared with the relative expression in normal breast, levels of FBXO31 were down-regulated in breast tumor cell lines and primary tumors. FBXO31 was cell cycle regulated in the breast cell lines MCF-10A and SKBR3 with maximal expression from late G(2) to early G(1) phase. Ectopic expression of FBXO31 in the breast cancer cell line MDA-MB-468 resulted in the accumulation of cells at the G(1) phase of the cell cycle. FBXO31 contains an F-box domain and is associated with the proteins Skp1, Roc-1, and Cullin-1, suggesting that FBXO31 is a component of a SCF ubiquitination complex. We propose that FBXO31 functions as a tumor suppressor by generating SCF(FBXO31) complexes that target particular substrates, critical for the normal execution of the cell cycle, for ubiquitination and subsequent degradation.  相似文献   

4.
Germline mutations of the LKB1 gene are responsible for Peutz-Jeghers syndrome (PJS), an autosomal dominant inherited disorder bestowing an increased risk of cancer. We have recently demonstrated that LKB1 inactivating mutations are not confined to PJS, but also appear in lung adenocarcinomas of sporadic origin, including primary tumors and lung cancer cell lines. To accurately determine the frequency of inactivating LKB1 gene mutations in lung tumors we have sequenced the complete coding region of LKB1 in 21 additional lung cancer cell lines. Here we describe the mutational status of LKB1 gene in 30 lung cancer cell lines from different histopathological types, including 11 lung adenocarcinomas (LADs) and 11 small cell lung cancers (SCLCs). LKB1 gene alterations were present in six (54%) of the LAD cell lines tested but in none of the other histological types. Similar to our previous observations in primary tumors, all point mutations were of the nonsense or frameshift type, leading to an abnormal, truncated protein. Moreover, 2 cell lines (A427 and H2126) harbored large gene deletions that spanned several exons. Hence, we have identified additional lung cancer cell lines carrying inactivating mutations of the LKB1 tumor suppressor gene, further attesting to the significance of this gene in the development of LADs and providing new natural LKB1 knockouts for studies of the biological function of the LKB1 protein.  相似文献   

5.
We have directly assessed the ability of interferon regulatory factor-1 (IRF-1) to act as a tumor suppressor gene in human breast cancer cells and explored whether this suppressor function is mechanistically conferred by affecting cell cycle transition, apoptosis and/or caspase activation. We have used a dual approach, measuring whether overexpression of wild-type IRF-1 or a dominant negative IRF-1 (dnIRF-1) produce opposing effects on breast cancer cell proliferation in vitro or tumorigenicity in athymic nude mice. Mechanistic studies determined the effects of blocking endogenous IRF-1 expression on cell cycle transition by flow cytometry, on apoptosis by Annexin V staining, and on caspase activation by fluorescent substrate cleavage. IRF-1 mRNA (P < or = 0.001) and protein (P < or = 0.001) are highly expressed in non-tumorigenic, normal, mammary epithelial cells, with intermediate expression in tumorigenic, but non-metastatic, cells and very low expression in metastatic cell lines. In MCF-7 cells transfected with a wild-type IRF-1 (MCF-7/IRF-1), IRF-1 mRNA expression inversely correlates with the rate of cell proliferation (r = -0.91; P = 0.002). Conversely, expression of dnIRF-1 in both MCF-7 (MCF-7/dnIRF-1; p53 wild-type) and T47D cells (T47D/dnIRF-1; p53 mutant) increases cell proliferation (P < or = 0.001). In athymic nude mice, the incidence of MCF-7/IRF-1 xenografts is reduced (P = 0.045), whereas MCF-7/dnIRF-1 xenografts exhibit a significantly higher tumor incidence (P < or = 0.001). Effects of IRF-1/dnIRF-1 are mediated through changes in the rates of apoptosis and not through cell cycle regulation. MCF-7/dnIRF-1 cells exhibit a 50% decrease in basal apoptosis (P = 0.007) and a significant reduction in caspase 8 activity (P = 0.03); similar effects occur in T47D/dnIRF-1 cells, where the effects on apoptosis appear to be mediated through inhibition of caspases 3/7 (P < 0.001) and caspase 8 (P = 0.03). These data establish a functional role for IRF-1 in the growth suppression of breast cancer cells and strongly implicate IRF-1 as a tumor suppressor gene in breast cancer that acts, independent of p53, to control apoptosis.  相似文献   

6.
Nakanishi C  Yamaguchi T  Iijima T  Saji S  Toi M  Mori T  Miyaki M 《Oncology》2004,67(5-6):476-479
Peutz-Jeghers syndrome (PJS) is an autosomal-dominant polyposis disorder with an increased risk of multiple cancer. The LKB1/STK11 gene, which acts as a tumor suppressor, is responsible for PJS and plays a role in suppressing breast cancer. The low expression of LKB1/STK11 in sporadic breast cancer is significantly associated with shorter survival. Here we describe a PJS patient with aggressive breast cancer that carried not only a germline mutation of LKB1/STK11 but also loss of the normal allele. The combination of these mutations may be associated with the poor prognosis of this patient. To our knowledge, we are the first to show that a germline mutation causing PJS is combined with the loss of the homologous normal allele of LKB1/STK11 in breast cancer.  相似文献   

7.
8.
Zeng PY  Berger SL 《Cancer research》2006,66(22):10701-10708
The tumor suppressor LKB1 is an evolutionarily conserved serine/threonine kinase. In humans, LKB1 can be inactivated either by germ-line mutations resulting in Peutz-Jeghers syndrome or by somatic mutations causing predisposition to multiple sporadic cancers. LKB1 has wide-ranging functions involved in tumor suppression and cell homeostasis, including establishing cell polarity, setting energy metabolic balance (via phosphorylation of AMP-dependent kinase), regulating the cell cycle, and promoting apoptosis. LKB1 function was previously linked to the tumor suppressor p53 and shown to activate the p53 target gene p21/WAF1. In this study, we further investigated LKB1 activation of the p21/WAF1 gene and addressed whether LKB1 is directly involved at the gene promoter. We find that, consistent with previous studies, LKB1 stabilizes p53 in vivo, correlating with activation of p21/WAF1. We show that LKB1 physically associates with p53 in the nucleus and directly or indirectly phosphorylates p53 Ser15 (previously shown to be phosphorylated by AMP-dependent kinase) and p53 Ser392. Further, these two p53 residues are required for LKB1-dependent cell cycle G(1) arrest. Chromatin immunoprecipitation analyses show that LKB1 is recruited directly to the p21/WAF1 promoter, as well as to other p53 activated promoters, in a p53-dependent fashion. Finally, a genetic fusion of LKB1 to defective p53, deleted for its activation domains, promotes activation of p21/WAF1. These results indicate that LKB1 has a direct role in activation of p21/WAF1 gene.  相似文献   

9.
10.
Inactivation of LKB1/STK11 is a common event in adenocarcinomas of the lung   总被引:15,自引:0,他引:15  
Frequent losses of chromosome 19p have recently been observed in sporadic lung adenocarcinomas, targeting the location of a critical tumor suppressor gene. Here we performed fine mapping of the short arm of chromosome 19 and found that the LKB1/STK11 gene mapped in the minimal-deleted region. Because germ-line mutations at LKB1/STK11 result in the Peutz-Jeghers syndrome and an increased risk of cancer, we performed a detailed genetic screen of the LKB1/STK11 gene in lung tumors. We detected a high frequency of somatic alterations (mainly nonsense mutations) in primary lung adenocarcinomas and in lung cancer cell lines. Thus, our findings demonstrate for the first time that LKB1/STK11 inactivation is a very common event and may be integrally involved in the development of sporadic lung adenocarcinoma.  相似文献   

11.
BACKGROUND: Dietary flavone was previously shown to increase the expression of deleted in liver cancer-1 gene (DLC-1) in HT-29 colon carcinoma cell line [Herzog A, Kindermann B, Doring F, Daniel H, Wenzel U. Pleiotropic molecular effects of the pro-apoptotic dietary constituent flavone in human colon cancer cells identified by protein and mRNA expression profiling. Proteomics 2004;4:2455-64]. DLC-1 that encodes a Rho GTPase-activating protein, functions as a tumor suppressor gene and is frequently inactivated or down-regulated in several common cancers. Restoration of DLC-1 expression suppresses in vitro tumor cells proliferation and tumorigenicity in vivo. METHODS: Here, the effect of flavone was examined in several DLC-1-deficient cell lines derived from different types human cancer using assays for cell proliferation, gene expression and transfer. RESULTS: We show that exposure to 150 microM flavone increased DLC1 expression in breast but not in liver or prostate carcinoma cells or a nonmalignant breast epithelial cell line. Flavone restored the expression of DLC1 in the breast carcinoma cell lines MDA-MB-468, MDA-MB-361, and BT20 as well as in the colon carcinoma cell line HT-29 all of which are DLC-1-negative due to promoter hypermethylation. We further show that flavone inhibited cell proliferation, induced cell cycle arrest at G(2)-M, increased p21(Waf1) gene expression, and caused apoptosis. Microarray analysis of these aggressive and metastatic breast carcinoma cells revealed 29 flavone-responsive genes, among which the DNA damage-inducible GADD genes were up-regulated and the proto-oncogene STMN1 and IGFBP3 were down-regulated. CONCLUSIONS: Flavone-mediated alterations of genes that regulate tumor cell proliferation, cell cycle, and apoptosis contribute to chemopreventive and antitumoral effects of flavone. Alone or in combination with demethylating agents, flavone may be an effective adjunct to chemotherapy in preventing breast cancer metastasis.  相似文献   

12.
Disruption of the Wnt pathway is thought to be crucial in the development of human cancer. Pathway inhibitory members of the secreted frizzled-related protein (SFRP) family were found to be downregulated due to epigenetic inactivation in various malignancies. To date, only SFRP1 has been studied in human breast cancer and we questioned whether other SFRP genes may be implicated in the pathogenesis of this disease as well. An initial real-time polymerase chain reaction analysis of SFRP5 expression in normal human tissues (n = 9) revealed weak expression in most tissues, including breast. Malignant mammary cell lines showed further SFRP5 expression loss in five of six cases. Consistently, in matched pairs of primary breast tumor/normal breast tissue, this downregulation (>5-fold) could be confirmed (n = 8/13; 62%). We identified promoter methylation as the predominant mechanism of SFRP5 gene silencing since SFRP5 promoter methylation correlated significantly with loss of SFRP5 expression in cell lines (P = 0.040) and primary tumors (P = 0.003). Moreover, cancerous cell lines re-expressed SFRP5 messenger RNA following treatment with DNA-demethylating drugs. Of 168 primary breast carcinomas, 73% harbored a methylated SFRP5 promoter, whereas 27% were unaffected by epigenetic alteration. Most interestingly, SFRP5 methylation was associated with reduced overall survival (OS) (P = 0.045) and was an independent risk factor affecting OS in a multivariate Cox proportional hazard model (hazard ratio): 4.55; 95% confidence interval: 1.01-20.56; P = 0.049). In conclusion, SFRP5 is a target of epigenetic inactivation in human breast cancer, supporting the hypothesis of its role as tumor suppressor gene. SFRP5 methylation may be a novel DNA-based biomarker potentially useful in clinical breast cancer management.  相似文献   

13.
Loss of chromosome 6q21-qter is the second most frequent loss of chromosomal material in sporadic breast neoplasms suggesting the presence of at least one tumor suppressor gene on 6q. We recently isolated a cDNA encoding a new zinc finger protein which we named ZAC according to its functional properties, namely induction of apoptosis and control of cell cycle progression. ZAC is expressed in normal mammary gland and maps to 6q24-q25, a recognized breast cancer hot spot on 6q. In the present report, we investigated the possible inactivation of ZAC in breast cancer cell lines and primary tumors. We detected no mutation in ZAC coding region in a panel of 45 breast tumors with allelic imbalance of 6q24-q25. However, a survey of eight breast cancer cell lines showed a deeply reduced (three cell lines) or complete loss of (five cell lines) ZAC expression. Treatment of three of these cell lines with the methylation-interfering agent 5-azacytidine induced ZAC re-expression. In addition, Northern blot and RNase protection assay analysis of ZAC expression in 23 unselected primary breast tumors showed a reduced expression in several samples. Together with its functional properties and chromosomal localization, these findings substantiate ZAC as a good candidate for the tumor suppressor gene on 6q24-q25.  相似文献   

14.
15.
16.
The dual-specificity phosphatase PTEN/MMAC1/TEP1 has recently been identified as the tumor suppressor gene most frequently mutated and/or deleted in human tumors. Germline mutations of PTEN give rise to Cowden Disease (CD), an autosomal dominantly-inherited cancer syndrome which predisposes to increased risk of developing breast and thyroid tumors. However, PTEN mutations have rarely been detected in sporadic thyroid carcinomas. In this study, we confirm that PTEN mutations in sporadic thyroid cancer are infrequent as we found one point mutation and one heterozygous deletion of PTEN gene in 26 tumors and eight cell lines screened. However, we report that PTEN expression is reduced both at the mRNA and at the protein level - in five out of eight tumor-derived cell lines and in 24 out of 61 primary tumors. In most cases, decreased PTEN expression is correlated with increased phosphorylation of the PTEN-regulated protein kinase Akt/PKB. Moreover, we demonstrate that PTEN may act as a suppressor of thyroid cancerogenesis as the constitutive re-expression of PTEN into two different thyroid tumor cell lines markedly inhibits cell growth. PTEN-dependent inhibition of BrdU incorporation is accompanied by enhanced expression of the cyclin-dependent kinase inhibitor p27kip1 and can be overcome by simultaneous co-transfection of an excess p27kip1 antisense plasmid. Accordingly, in a subset of thyroid primary carcinomas and tumor-derived cell lines, a striking correlation between PTEN expression and the level of p27kip1 protein was observed. In conclusion, our findings demonstrate that inactivation of PTEN may play a role in the development of sporadic thyroid carcinomas and that one key target of PTEN suppressor activity is represented by the cyclin-dependent kinase inhibitor p27kip1.  相似文献   

17.
18.
19.
BRMS1 is regarded as a metastasis suppressor gene for its ability to reduce metastatic potential of human and murine breast cancer cells as well as human melanoma cells. However, BRMS1 association to human tumor progression is not clearly understood. In the present study we analyzed BRMS1 mRNA expression in tumor progression and its potential prognostic value for breast carcinoma. BRMS1 mRNA expression level was quantified by real-time PCR in 47 tumoral, in 14 peritumoral and in 15 metastatic microdissected cellular populations from 47 breast cancer patients with 10-year follow up. We found BRMS1 expression to be higher in carcinoma cells than in matching normal epithelial cell populations in 10 out of 14 cases (p = 0.0005), while lymph-nodal carcinoma cells showed lower BRMS1 expression in 9 out of 15 cases (p = 0.001). Using both in vivo (human mammary breast carcinomas) and in vitro systems (breast cancer cell lines) we were able to demonstrate that BRMS1 overexpression was not a bias effect induced by cell proliferation rate. BRMS1 expression levels did not correlate with standard breast cancer prognostic factors but BRMS1 higher expression was associated with patient shorter disease-free and overall survival. Our findings are apparently inconsistent with the concept of BRMS1 as a metastasis suppressor gene. One possible explanation is that epithelial cells increase their BRMS1 expression as a compensatory response to tumor formation or metastasis progression, which is elevated in proportion to tumor aggressiveness, whereas those cells of the primary tumor that cannot upregulate BRMS1 escape to form metastasis.  相似文献   

20.
Tan JX  Ren GS  Tu G  Li XT  Wang XY  Ran L 《癌症》2006,25(7):844-848
背景与目的:有研究证实透明质酸酶(hyaluronidase,Hyase)与人乳腺癌的恶性潜能相关。本研究拟探讨RNA干扰是否能有效抑制Hyde基因HYAL1的表达以及人乳腺癌细胞的生长和增殖。方法:体外化学合成HYAL1序列特异性双链RNA(dsRNA),在脂质体(SiPORT Lipid)的介导下转染人乳腺癌细胞株MDA-MB-231、MDA-MB-453S、ZR-75和ZR-75-30。荧光共聚焦显微镜下观察转染效率,RT-PCR分析HYAL1 mRNA的表达,MTT测定细胞的增殖,流式细胞仪测定细胞周期。结果:(1)HYAL1-siRNA能有效地封闭HYALl基因的表达.使HYAL1 mRNA相对水平明显降低(P〈0.05);(2)HYAL1-siRNA能明显抑制细胞增殖(P〈0.05);(3)HYAL1-siRNA使细胞周期G0/G1期细胞百分比明显增加,S期的细胞百分比显著减少(P〈0.05)。结论:siRNA-HYAL1能有效抑制人乳腺癌细胞株HYAL1基因的表达,抑制细胞增殖,将更多的细胞阻滞在G0/G1期。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号