首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Five new phenolic glycosides, 2-hydroxy-(2′E)-prenyl benzoate-2,4′-di-O-β-d-glucopyranoside (1), 2-hydroxy-(2′E)-prenyl benzoate-2-O-α-l-arabinopyranosyl-(1 → 6)-β-d-glucopyranoside (2), 4-methylphenol-1-O-α-l-rhamnopyranosyl-(1 → 6)-β-d-glucopyranoside (3), 4-methylphenol-1-O-α-l-arabinopyranosyl-(1 → 6)-β-d-glucopyranoside (4), and 3,5-dimethoxyphenol-1-O-β-d-apiofuranosyl-(1 → 2)-β-d-glucopyranoside (5), together with six known glycosides (611), were isolated from the n-BuOH fraction of the EtOH extract of Pilea cavaleriei Levl subsp. cavaleriei. Their structures were elucidated by extensive spectroscopic analysis, including 1D and 2D NMR spectroscopy as well as HR-ESI-MS, and chemical evidences. All these compounds were isolated from the genus Pilea for the first time.  相似文献   

2.
Two new anthraquinone glycosides, named 1-methyl-8-hydroxyl-9,10-anthraquinone-3-O-β-d-(6′-O-cinnamoyl)glucopyranoside (1) and rhein-8-O-β-d-[6′-O-(3″-methoxyl malonyl)]glucopyranoside (2), have been isolated from the roots of Rheum palmatum, together with seven known compounds, rhein-8-O-β-d-glucopyranoside (3), physcion-8-O-β-d-glucopyranoside (4), chrysophanol-8-O-β-d-glucopyranoside (5), aleo-emodin-8-O-β-d-glucopyranoside (6), emodin-8-O-β-d-glucopyranoside (7), aleo-emodin-ω-O-β-d-glucopyranoside (8), and emodin-1-O-β-d-glucopyranoside (9). Their structures were elucidated on the basis of chemical and spectral analysis.  相似文献   

3.
Three new isoflavone glycosides, 3′-methoxydaidzein-7,4′-di-O-β-d-glucopyranoside (1), biochanin A-8-C-β-d-apiofuranosyl-(1 → 6)-O-β-d-glucopyranoside (2), daidzein-7-O-β-d-glucopyranosyl-(1 → 4)-O-β-d-glucopyranoside (3), and a new natural isoflavone glycoside, daidzein-7-O-α-d-glucopyranosyl-(1 → 4)-O-β-d-glucopyranoside (4) were isolated along with 18 known isoflavones from the EtOAc and n-BuOH fractions of the aqueous extraction of Tongmai granules. All the isoflavones were obtained and determined for the first time from Tongmai granules. The structures of these compounds were elucidated by spectral methods. It was confirmed that the compounds 14 were originally from Puerariae Lobatae Radix based on HPLC-DAD analysis of the crude drug extract. The isoflavones isolated were tested for their antioxidative activities by measuring the capacities of scavenging the 2,2′-diphenyl-1-picrylhydrazyl radical.  相似文献   

4.
Two new lignan glycosides, 2′-hydroxyl asarinin 2′-O-β-D-glucopyranoside (cuscutoside C, 1) and 2′-hydroxyl asarinin 2′-O-β-D-apiofuranosyl-(1 → 2)-[β-D-glucopyranosyl-(1 → 6)]-β-D-glucopyranoside (cuscutoside D, 2), were isolated from the seeds of Cuscuta chinensis Lam., along with six known compounds, 2′-hydroxyl asarinin 2′-O-β-D-glucopyranosyl-(1 → 6)-β-D-glucopyranoside (3), 2′-hydroxyl asarinin 2′-O-β-D-apiofuranosyl-(1 → 2)-β-D-glucopyranoside (cuscutoside A, 4), kaempferol 3,7-di-O-β-D-glucopyranoside (5), 5-caffeoyl quinic acid (6), 4-caffeoyl quinic acid (7), and cinnamic acid (8). Their structures were elucidated on the basis of spectroscopic analyses including HR-ESI-MS, ESI-MS/MS, 1H and 13C NMR, HSQC, HMBC, and TOCSY.  相似文献   

5.
Three new flavonol glycosides, kaempferol-3-O-(6-trans-caffeoyl)-β-d-glucopyranosyl-(1 → 2)-β-d-glucopyranoside (1), kaempferol-3-O-(6-trans-caffeoyl)-β-d-glucopyranosyl-(1 → 2)-β-d-glucopyranoside-7-O-β-d-glucopyranoside (2), and kaempferol-3-O-(6-trans-p-coumaroyl)-β-d-glucopyranosyl-(1 → 2)-β-d-glucopyranoside-7-O-β-d-glucopyranoside (3), were isolated from the aerial part of Camptosorus sibiricus. Their structures were elucidated by spectroscopic methods, including 2D NMR spectral techniques.  相似文献   

6.
Three new steroidal saponins, pallidiflosides A (1), B (2), and C (3), have been isolated from the dry bulbs of Fritillaria pallidiflora Schrenk. Their structures were elucidated as 26-O-β-d-glucopyranosyl-(25R)-furost-5,20(22)-dien-3β,26-diol-3-O-β-d-xylopyranosyl(1 → 4)-[α-l-rhamnopyranosyl(1 → 2)]-β-d-glucopyranoside (1); 26-O-β-d-glucopyranosyl-3β,26-dihydroxyl-20,22-seco-25(R)-furost-5-en-20,22-dione-3-O-α-l-rhamnopyranosyl(1 → 2)-β-d-glucopyranoside (2); and (25R)-spirost-5-ene-3β,17α-diol-3-O-β-d-glucopyranosyl(1 → 4)-β-d-galactopyranoside (3) by spectroscopic techniques and chemical means.  相似文献   

7.
Phytolacacinoside A (1), a novel triterpenoid saponin, together with the seven known compounds, was isolated from 75% ethanol extract of the root of Phytolacca acinosa Roxb (Phytolaccaceae). Their structures were elucidated on the basis of analysis of spectroscopic data and physicochemical properties as 3-O-β-[(β-d-glucopyranosyl-(1 → 4)-O-β-d-xylopyranosyl)]-11β-methoxy-jaligonic acid 30-methyl ester 28-O-β-d-glucopyranoside (1), 3-O-β-[(β-d-glucopyranosyl-(1 → 4)-O-β-d-xylopyranosyl)]-jaligonic acid 30-methyl ester 28-O-β-d-glucopyranoside (2, esculentoside G), 3-O-β-[(β-d-glucopyranosyl-(1 → 4)-O-β-d-xylopyranosyl)]-jaligonic acid 30-methyl ester (3, phytolaccoside E), 3-O-β-d-xylopyranosyl-jaligonic acid 30-methyl ester (4, phytolaccoside B), hypaphorine (5), palmitic acid monoglyceride (6), β-sitosterol (7), and daucosterol (8).  相似文献   

8.
A new triterpene glycoside mutongsaponin F (1), together with five known saponins and two known lipids, was isolated from the 70% ethanol extract of the stems of Akebia trifoliata (Thunb.) Koidz. var. australis (Diels) Rehd. Their structures were elucidated on the basis of the spectroscopic analysis and physicochemical properties as 3-β-[(β-d-glucopyranosyl-(1 → 2)-O-[β-d-glucopyranosyl-(1 → 3)-O-]-α-l-arabinopyranosyl)oxy]-30-norolean-12-en-28-oic acid α-l-rhamnopyranosyl-(1 → 4)-O-β-d-glucopyranosyl-(1 → 6)-O-β-d-glucopyranosyl ester (1), 3-β-[(β-d-glucopyranosyl-(1 → 2)-O-[β-d-glucopyranosyl-(1 → 3)-O-]-α-l-arabinopyranosyl)oxy]-30-norolean-12-en-28-oic acid (2), leonticin E (3), collinsonidin (4), arjunolic acid 28-O-glucopyranoside (5), asiatic acid 28-O-glucopyranoside (6), soya-cerebroside I (7), and 1-O-α-l-galactosyl-(1 → 6)-O-β-d-galactosyl-3-O-hexadecanoyl-glycerol (8), respectively.  相似文献   

9.
Two new furostanol glycosides, ophiopogonins H (1) and I (2), were isolated from the fibrous root of Ophiopogon japonicus. The structures of 1 and 2 were established as (25R)-26-[(O-β-d-glucopyranosyl-(1 → 2)-β-d-glucopyranosyl)]-22α-hydroxyfurost-5-ene-3-O-[α-l-rhamnopyranosyl-(1 → 2)]-β-d-glucopyranoside and (25R)-26-[(O-β-d-glucopyranosyl-(1 → 2)-β-d-glucopyranosyl)]-20α-hydroxyfurost-5,22-diene-3-O-[α-l-rhamnopyranosyl-(1 → 2)]-β-d-glucopyranoside on the basis of spectroscopic means including HR-ESI-MS, 1D and 2D NMR experiments.  相似文献   

10.
Two new flavone glycosides were isolated from the seeds of Impatiens balsamina L. and their structures were determined as quercetin-3-O-[α-l-rhamnose-(1 → 2)-β-d-glucopyranosyl]-5-O-β-d-glucopyranoside (1), and quercetin-3-O-[(6?-O-caffeoyl)-α-l-rhamnose-(1 → 2)-β-d-glucopyranosyl]-5-O-β-d-glucopyranoside (2) on the basis of various spectral and chemical studies.  相似文献   

11.
Two new furostanol saponins ophiopogonins J (1) and K (2) were isolated from the fibrous roots of Ophiopogon japonicus. The structures of 1 and 2 were established as (25R)-26-O-[(β-d-glucopyranosyl-(1 → 2)-β-d-glucopyranosyl)]-14-hydroxy-furost-5,20(22)-diene 3-O-[α-l-rhamnopyranosyl-(1 → 2)]-β-d-glucopyranoside (1), and (25R)-26-O-[(β-d-glucopyranosyl-(1 → 2)-β-d-glucopyranosyl)]-furost-5,20(22)-diene 3-O-α-l-rhamnopyranosyl-(1 → 2)[(β-d-xylopyranosyl-(1 → 4)-β-d-glucopyranoside)] (2) on the basis of spectroscopic means including HRESIMS, 1D, and 2D NMR experiments.  相似文献   

12.
Three new flavone C-glycosides, paraquinins A–C, were isolated from the aerial parts of Paraquilegia microphylla (Royle) Dromm. et Hutch, a Tibetan medicine distributed in the Qinghai-Tibet plateau. On the basis of 1D and 2D NMR evidence, their structures were elucidated as acacetin-6-C-β-d-glucopyranosyl-(1 → 2)-β-d-glucopyranoside (1), acacetin-6-C- l-rhamnopyranosyl-(1 → 2)-β-d-glucopyranosyl-(1 → 2)-β-d-glucopyranoside (2), and acacetin-6-C-α-l-rhamnopyranosyl-(1 → 2)-(6?-O-E-feruloyl)-β-d-glucopyranosyl-(1 → 2)-β-d-glucopyranoside (3).  相似文献   

13.
Two new flavonoid glycosides, quercetin 7-O-β-d-apiofuranosyl-(1 → 2)-β-d-xylopyranoside (1) and quercetin 7-O-β-d-apiofuranosyl-(1 → 2)-β-d-xylopyranoside 3′-O-β-d-glucopyranoside (2), together with nine known flavonoids were isolated from the whole herbs of Hyssopus officinalis L. cultivated in Xinjiang Uygur Autonomous Region of China. All structures were characterized by the spectroscopic methods including UV, IR, ESI-MS, 1D, and 2D NMR. Their potent free radical scavenging activity against the stable 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical was evaluated.  相似文献   

14.
A new sesquiterpenoid glycoside, cryptomeridiol 11-O-β-d-xylopyranosyl-(1→6)-β-d- glucopyranoside (1), two new phenylpropanoid glycosides, 3,4-dihydroxy-allylbenzene 3-O-β-d-glucopyranosyl-4-O-β-d-apiofuranosyl-(1→6)-β-d-glucopyranoside (2), and 3,4,5-trihydroxy-allylbenzene 3-O-β-d-glucopyranosyl-4-O-β-d-glucopyranoside (3), along with four known phenylpropanoid glycosides (4–7), were isolated from the tuber of Ophiopogon japonicus. Compounds 4–7 were obtained from the genus Ophiopogon for the first time. Their structures were elucidated by spectroscopic methods, including 1D and 2D NMR and HR-ESI-MS.  相似文献   

15.
Two new phenolic glycosides were isolated from the seeds of Cucurbita moschata. Their structures were elucidated as (2-hydroxy)phenylcarbinyl 5-O-benzoyl-β-d-apiofuranosyl(1 → 2)-β-d-glucopyranoside (1) and 4-β-d-(glucopyranosyl hydroxymethyl)phenyl 5-O-benzoyl-β-d-apiofuranosyl(1 → 2)-β-d-glucopyranoside (2) on the basis of spectroscopic analysis and chemical evidence.  相似文献   

16.
Three new flavonoid glycosides, kaempferol-3-O-β-d-apiofuranosyl(1 → 2)-β-d-glucopyranosyl-7-O-α-l-rhamnopyranoside (1), kaempferol-4′-O-β-d-apiofuranosyl-3-O-β-d-glucopyranosyl-7-O-α-l-rhamnopyranoside (2), and 5,6,7,4′-tetrahydroxy-flavone-6-O-β-d-arabinopyranosyl-7-O-α-l-rhamnopyranoside (3), were isolated from the aerial parts of Urena lobata L., along with 10 known compounds (413). Their structures were determined based on spectroscopic methods including 1D and 2D NMR spectroscopy as well as HR-ESI-MS.  相似文献   

17.
Two new furostanol saponins, together with two known steroidal saponins, were isolated from the seeds of Trigonella foenum-graecum L. The structures of the new compounds were determined by detailed analysis of 1D NMR, 2D NMR, MS spectra and chemical evidences as 26-O-β-d-glucopyranosyl-(25S)-5-en-furost-3β,22α,26-triol 3-O-α-l-rhamnopyranosyl-(1 → 2)-[β-d-glucopyranosyl-(1 → 6)-β-d-glucopyranosyl-(1 → 3)-β-d-glucopyranosyl-(1 → 4)]-β-d-glucopyranoside (1) and 26-O-β-d-glucopyranosyl-(25R)-5-en-furost-3β,22α,26-triol 3-O-α-l-rhamnopyranosyl-(1 → 2)-[β-d-glucopyranosyl-(1 → 6)]-β-d-glucopyranosyl-(1 → 3)-β-d-glucopyranosyl-(1 → 4)]-β-d-glucopyranoside (2).  相似文献   

18.
Two novel furostanol saponins were isolated from the fresh tubers of Ophiopogon japonicus. Comprehensive spectroscopic analysis allowed the chemical structures of the compounds to be assigned as (25R)-26-[(O-β-d-glucopyranosyl-(1 → 2)-β-d-glucopyranosyl)]-22α-hydroxyfurost-5-ene-3-O-β-d-xylopyranosyl-(1 → 4)-O-[α-l-rhamnopyranosyl-(1 → 2)]-β-d-glucopyranoside (1, ophiopogonin F) and (25R)-26-[(O-β-d-glucopyranosyl-(1 → 6)-β-d-glucopyranosyl)]-22α-hydroxyfurost-5-ene-3-O-β-d-xylopyranosyl-(1 → 4)-O-[α-l-rhamnopyranosyl-(1 → 2)]-β-d-glucopyranoside (2, ophiopogonin G). The rare furostanol saponins with two glucosyl residues at C-26 position were isolated from the natural source for the first time.  相似文献   

19.
Four new triterpenoid saponins (14) were isolated from the seed residue of Hippophae rhamnoides subsp. sinensis, named 3-O-[β-d-glucopyranosyl(1 → 2)-β-d-glucopyranosyl-(1 → 3)]-[α-l-rhamnopyranosyl-(1 → 2)]-α-l-arabinopyranosyl-13-ene-19-one-28-oic acid 28-O-β-d-glucopyranosyl ester (1), 3-O-[β-d-glucopyranosyl(1 → 2)-β-d-glucopyranosyl-(1 → 3)]-[α-l-rhamnopyranosyl-(1 → 2)]-α-l-arabinopyranosyl-13-ene-19-one-30-hydroxyolean-28-oic acid 28-O-β-d-glucopyranosyl ester (2), 3-O-[β-d-glucopyranosyl(1 → 2)-β-d-glucopyranosyl-(1 → 3)]-[α-l-rhamnopyranosyl-(1 → 2)]-β-d-glucopyranosyl-13-ene-19-one-28-oic acid 28-O-β-d-glucopyranosyl ester (3), and 3-O-[β-d-glucopyranosyl(1 → 2)-β-d-glucopyranosyl-(1 → 3)]-[α-l-rhamnopyranosyl-(1 → 2)]-β-d-glucopyranosyl-13-ene-19-one-30-hydroxyolean-28-oic acid 28-O-β-d-glucopyranosyl ester (4), and their structures were elucidated on the basis of spectroscopic and chemical methods.  相似文献   

20.
A novel spinosin derivative, 6?-(4?′-O-β-d-glucopyranosyl)-vanilloyl spinosin (1) was isolated from the methanol extract of Semen Ziziphi Spinosae, together with five known flavonoids, swertish (2), spinosin (3), 6?-feruloylspinosin (4), isospinosin (5) and kaempferol 3-O-α-l-rhamnopyranosyl-(1 → 2)-O-[O-α-l-rhamnopyranosyl-(1 → 6)]-β-d-glucopyranoside (6), and two alkanoids, zizyphusine (7) and 6-(2′,3′-dihydroxyl-4′-hydroxymethyl-tetrahydro-furan-1′-yl)-cyclopentene[c]pyrrole-1,3-diol (8). The structure of compound 1 was elucidated by spectroscopic methods including UV, IR, ESI-TOF-MS, 1D, and 2D NMR techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号