首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein adsorption and cell attachment to patterned surfaces   总被引:3,自引:0,他引:3  
To better understand the events involved in the generation of defined tissue architectures on biomaterials, we have examined the mechanism of attachment of human bone-derived cells (HBDC) to surfaces with patterned surface chemistry in vitro. Photolithography was used to generate alternating domains of N-(2-aminoethyl)-3-aminopropyl-trimethoxysilane (EDS) and dimethyldichlorosilane (DMS). At 90 min after seeding, HBDC were localized preferentially to the EDS regions of the pattern. Using sera specifically depleted of adhesive glycoproteins, this spatial organization was found to be mediated by adsorption of vitronectin (Vn) from serum onto the EDS domains. In contrast, fibronectin (Fn) was unable to adsorb in the face of competition from other serum components. These results were confirmed by immunostaining, which also revealed that both Vn and Fn were able to adsorb to EDS and DMS regions when coated from pure solution, i.e., in the absence of competition. In this situation, each protein was able to mediate cell adhesion across a range of surface densities. Cell spreading was constrained on the EDS domains, as indicated by cell morphology and the lack of integrin receptor clustering and focal adhesion formation. This spatial constraint may have implications for the subsequent expression of differentiated function.  相似文献   

2.
细胞在材料表面的黏附对细胞的增殖和分化志重要作用。格式化表面提供了对细胞在基底的空间分布和黏附进行控制的方法。本文利用微制作利用微制作形成的格式模板,分别以微接触转印法和微流道法形成格式化表面,使MC3T3-E1成骨细胞以一定的格式黏附于表面上,在微接触转印法形成的含二氯二甲基硅烷(DMS)的疏水区域和不含DMS的亲水区域相间隔的表面,细胞优先在亲水区域黏附,在微流道法形成的胶原和白蛋白格式化表面,细胞优先黏附于含胶原区域,结果还表明微格式化表面可以用于研究表面的物理化学性质对细胞的黏附等功能的影响。  相似文献   

3.
The regulation of cell motility by ligand density on substrates with variable microtopography is not well understood. In this report, we studied the adhesion and motility behavior of HepG2 cells on microtextured poly(glycolic-co-lactic)acid (PGLA) copolymer substrates, whose surface bioactivity was differentially modified through the adsorption of 0-5.5 ng/cm(2) collagen. Microtextured PGLA substrates were fabricated as thin films with a uniform surface distribution of micropores of median size of 3.1 +/- 1.5 microm and three-dimensional root mean squared roughness of 0.253 microm. Even in the absence of collagen, cells on microtextured substrates responded to substrate topography by exhibiting a 200% increase in adhesion strength compared with untextured controls and ventral localization of the intracellular adhesion protein vinculin. Further enhancement in adhesion strength (420% over untextured, untreated substrates) was demonstrated with bioactivated, microtextured surfaces, indicating that cell adhesion responses to topography and surface ligand density were cooperative. Our motility studies of cells on untextured substrates adsorbed with different levels of collagen demonstrated that a classical biphasic relationship between the cell population averaged migration rate, mu, and the collagen ligand density was preserved. However, comparison of cell motility responses between untextured and microtextured substrates indicates that the motility versus ligand density curve shifted, such that equivalent levels of cell motility were achieved at lower ligand density on microtextured surfaces. Furthermore, the maximum mu values achieved on the microtextured substrates exceeded those on untextured substrates by twofold. Taken together, we show that the magnitude of subcellular scale microtexture of a polymer substrate can sensitize the cell motility responsiveness to substrate ligand concentration; we suggest that the underlying mechanisms involve alteration in the degree of cell-substrate adhesivity as well as changes in the nature of ligand-induced cell activation processes.  相似文献   

4.
The ability to spatially control cell adhesion and multicellular organization is critical to many biomedical and tissue-engineering applications. This work describes a straightforward method to micropattern cells onto glass, silicone rubber, and polystyrene using commercially available reagents. An elastomeric polydimethylsiloxane stamp is used to contact-transfer extracellular matrix protein onto a surface followed by blocking cell adhesion in the surrounding regions by the physisorption of Pluronic surfactants. Using self-assembled monolayers of alkanethiols on gold as model surfaces to control surface wettability, we found that protein printing was most effective at intermediate to highly wetting surfaces whereas Pluronic adsorption occurred at intermediate to low wetting surfaces. Within a regimen of intermediate wettability both techniques were applied in conjunction to restrict cell adhesion to specified patterns. Adjusting the wettability of common tissue culture substrates to the same intermediate range again allowed the micropatterning of cells, suggesting that this approach is likely to be generally applicable to many types of materials. This technique therefore may allow for wider adoption of cell patterning.  相似文献   

5.
Cargill RS  Dee KC  Malcolm S 《Biomaterials》1999,20(23-24):2417-2425
The strength of adhesion of NG108-15 cells to glass substrates modified with adsorbed proteins (laminin and poly-ornithine) or modified with covalently bound peptides (tri-ornithine and Tyr-Ile-Gly-Ser-Arg) was quantitatively assessed, by determining the shear stresses necessary to denude the cells from substrates using a spinning disk device. The shear stresses required to detach NG108-15 cells from glass modified with either adsorbed poly-ornithine or with both poly-ornithine and laminin were significantly (P < 0.05) higher than the shear stresses required to detach the cells from plain glass substrates. Covalent surface modifications resulted in higher strengths of NG108-15 adhesion than were exhibited on surfaces modified with adsorbed proteins. NG108-15 cell adhesion strength was maximal on surfaces covalently modified with only amine groups (without any peptides or proteins). These results indicate that general (i.e., not necessarily receptor-specific) surface modification strategies, which increase the net surface charge of a substrate, will elicit strong adhesion of NG108-15 cells.  相似文献   

6.
The effect of specific chemical functionalities on the adhesion of two Staphylococcus epidermidis strains under flow was investigated by using surfaces prepared by self-assembly of alkyl silane monolayers on glass. Terminal methyl (CH3) and amino (NH2) groups were formed in solution and by chemical vapor deposition of silanes, at elevated temperature. Hydroxyl (OH)-terminated glass was used as control. Surface modification was verified by contact angle and zeta potential measurements, atomic force microscopy and X-ray photoelectron spectroscopy. A parallel plate flow chamber was used to evaluate bacterial adhesion at various shear rates. The effect of the solution’s ionic strength on adhesion was also studied. Adhesion was found to be dependent on the monolayer’s terminal functionality. It was higher on the CH3 followed by the NH2 and minimal on the OH-terminated glass for both strains. The increase in the ionic strength significantly enhanced adhesion to the various substrates, in accordance with the Derjaguin–Landau–Verwey–Overbeek (DLVO) theory. The extended DLVO theory explained well the combined effects of surface and solution properties on bacterial adhesion under low shear rates. However, the increase in the shear rate restricted the predictability of the theory and revealed macromolecular interactions between bacteria and NH2-terminated surfaces.  相似文献   

7.
In an attempt to interact natural bone and bone cells with biomaterials and to begin to develop modular tissue engineering scaffolds, substrates containing phosphonate groups were identified to mimic mineral-protein and natural polymer-protein interactions. In this study, we investigated poly(vinyl phosphonic acid) copolymer integration with existing materials as a graft-copolymer surface modification. Phosphonate-containing copolymer-modified surfaces were created and shown to have varying phosphate content within different polymeric surfaces. As the phosphonate content in the monomer feed approached 30% vinyl phosphonic acid, increased osteoblast-like cell adhesion (3- to 8-fold increase in adhesion) and proliferation (2- to 10-fold increase in proliferation rate) was observed. Since surfaces modified with 30% vinyl phosphonic acid in the feed exhibited a maximal cell adhesion and proliferation (9.4 x 10(4) cells/cm(2)/day), it was hypothesized that this copolymer composition was optimal for protein-polymer interactions. Osteoblast-like cells formed confluent layers and were able to differentiate on all surfaces that contained vinyl phosphonic acid. Most importantly, cells interacting with these surfaces were able to significantly mineralize the surface. These results suggest that phosphonate-containing polymers can be used to integrate biomaterials with natural bone and could be used for tissue engineering applications.  相似文献   

8.
9.
Endothelial cell (EC) migration has been studied on aminophase surfaces with covalently bound RGDS and YIGSRG cell adhesion peptides. The fluorescent marker dansyl chloride was used to quantify the spatial distribution of the peptides on the modified surfaces. Peptides appeared to be distributed in uniformly dispersed large clusters separated by areas of lower peptide concentrations. We employed digital time-lapse video microscopy and image analysis to monitor EC migration on the modified surfaces and to reconstruct the cell trajectories. The persistent random walk model was then applied to analyze the cell displacement data and compute the mean root square speed, the persistence time, and the random motility coefficient of EC. We also calculated the time-averaged speed of cell locomotion. No differences in the speed of cell locomotion on the various substrates were noted. Immobilization of the cell adhesion peptides (RGDS and YIGSRG), however, significantly increased the persistence of cell movement and, thus, the random motility coefficient. These results suggest that immobilization of cell adhesion peptides on the surface of implantable biomaterials may lead to enhanced endothelization rates.  相似文献   

10.
Recent efforts in our laboratory have focused on developing methods for immobilizing bioactive peptides to low cell-adhesive dextran monolayer coatings and promoting biospecific cell adhesion for biomaterial implant applications. In the current study, this dextran-based bioactive coating technology was developed for silicon, polyimide, and gold, the base materials utilized to fabricate our prototype neural implants. Chemical composition of all modified surfaces was verified by X-ray photoelectron spectroscopy (XPS). We observed that surface-immobilized dextran supported very little cell adhesion in vitro (24-h incubation with serum-supplemented medium) on all base materials. Inactive nonadhesion-promoting Gly-Arg-Ala-Asp-Ser-Pro peptides immobilized on dextran-coated materials promoted adhesion and spreading at low levels not significantly different from dextran-coated substrates. Arg-Gly-Asp (RGD) peptide-grafted surfaces were observed to promote substantial fibroblast and glial cell adhesion with minimal PC12 (neuronal cell) adhesion. In contrast, dextran-coated materials with surface-grafted laminin-based, neurite-promoting Ile-Lys-Val-Ala-Val (IKVAV) peptide promoted substantial neuron cell adhesion and minimal fibroblast and glial cell adhesion. It was concluded that neuron-selective substrates are feasible using dextran-based surface chemistry strategies. The chemical surface modifications could be utilized to establish a stable neural tissue-implant interface for long-term performance of neural prosthetic devices.  相似文献   

11.
In this study, we investigated the suitability of microjet impingement for use on hydrogel materials to determine the cellular adhesion strength of corneal epithelial cells grown on novel hydrogels with extracellular matrix proteins (laminin and/or fibronectin) or a peptide sequence (fibronectin adhesion promoting peptide, FAP) tethered to their surface with poly(ethylene glycol) chains. The deformation of the hydrogel surface in response to the force of the microjet was analyzed both visually and mathematically. After the results of these experiments and calculations determined that no deformation occurred and that the pressure required for indentation (1.25 x 10(6) Pa) was three factors of 10 greater than the maximum pressure of the microjet, the relative mean adhesion strength of primary rabbit corneal epithelial cells grown on the novel poly(2-hydroxyethyl methacrylate-co-methacrylic acid) hydrogels was determined and compared with that of the same type of cells grown on control glass surfaces. Only confluent cell layers were tested. Cells grown on control glass surfaces adhered with a mean relative adhesion strength of 488 +/- 28 dynes/cm2. Under identical conditions, cells grown on laminin- and FAP-tethered hydrogel surfaces were unable to be removed, indicating an adhesion strength greater than 516 dynes/cm2. Cells grown on fibronectin- and fibronectin/laminin (1:1)-tethered surfaces showed significantly lower relative adhesion strengths (201 +/- 50 and 189 +/- 11 dynes/cm2, respectively), compared with laminin- and FAP-tethered surfaces (p = 0.001). Our results demonstrate that the microjet impingement method of cell adhesion analysis is applicable to hydrogel substrates. Additionally, analysis of our test surfaces indicates that fibronectin tethered to this hydrogel in the quantity and by the method used here does not induce stable ligand/receptor bonding to the epithelial cell membrane to the same degree as does laminin or FAP.  相似文献   

12.
The successful integration of an orthopedic implant into bone depends on the mechanisms at the tissue–implant interface and mostly on the osteoblast attachment phenomenon. Chitosan has emerged as an attractive biomacromolecule favoring osseointegration. In this study highly deacetylated chitosan coatings, with roughness of about 1 nm, were bonded to glass surfaces via silane–glutaraldehyde molecules. Human osteoblasts were used to study the development of attachment during the first 60 min. Chitosan favored the number of the attached cells compared to the uncoated surfaces for 30 min seeding time (t s). For t s up to 60 min the attached cell area was almost 210% significantly higher on the chitosan surfaces, indicating an enhanced spreading process. To determine the cell attachment strength, a micropipette aspiration method was used, where the value of the term I = ∫Fdt is representative of the single cell attachment–adhesion procedure and quantitatively reflects the strength evolution during attachment: F equals the detaching force applied on the cell. The results showed higher strength values on the chitosan surfaces. The findings reinforce the favorable environment of the biomacromolecule for the osteoblast and the new approach regarding the quantitatively evaluation of adhesion provides important contribution for the study of cell–material interaction, especially during the crucial first phase of cell attachment.  相似文献   

13.
Acrylate monomers were photografted from polymer substrates to create cell responsive chemically and biologically active surfaces that manipulate cell response. Three monomers, polyethylene glycol monoacrylate (MW 375 g/mol) (PEG375A), a monomeric extra-cellular matrix protein, and a cell-cleavable fluorescent monomer, were spatially photopatterned from a base substrate. The base substrate consisted of a dithiocarbamate (DTC) functionalized urethane diacrylate/tri(ethylene glycol)diacrylate copolymer and was shown to non-specifically support NIH 3T3 fibroblast cell adhesion. The DTC-containing polymer was further modified by grafting PEG375A to demonstrate selective blocking of cell-material interactions. Next, acrylated collagen type I was patterned onto polymer substrates to further promote specific cell interactions (i.e. by presenting cell-adhesive moieties). Hydrophilic PEG375A grafted patterns were shown to prevent 3T3 fibroblast adhesion to polymer in spatially grafted regions, while biologically active acrylated collagen type I promoted cell-surface interactions. Collagen type I was grafted at varying densities (0-7.5 pmol/grafted square), and the extent of cell adhesion and spreading were evaluated for each of these graft densities using fluorescence microscopy. Finally, methacrylated carboxyfluorescein diacetate (CFDA) was synthesized and photografted onto a cell-adhesive substrate as a cell sensing mechanism. The acetate groups found in the structure of CFDA cleave in the presence of cells. This cell-responsive substrate results in fluorescence indicative of acetate-group cleavage associated with cell interactions that occurs in patterned regions on polymer surfaces. Collectively, the results herein show the utility and application of a spatially and temporally controlled photografting process for designing cell responsive polymer surfaces.  相似文献   

14.
The initial step in the migration of neutrophils to the extravascular space is adhesion to the endothelium. We examined the effect of nitric oxide on this process by treating human neutrophils withS-nitroso-N-acetylpenicillamine (SNAP), a NO-producing compound. Since NO has been shown to increase the level of cGMP in other cell types, we used 8-Br-cGMP in order to mimic the effects of NO. Indeed, both these treatments resulted in a reduced adhesion of neutrophils to type I collagen coated surfaces. After a prolonged incubation with SNAP, the adhesion was the same as for untreated cells. SNAP incubation reduced the F-actin content in the cells whereas 8-Br-cGMP increased it, demonstrating different mechanisms of action on F-actin. These data suggest that endothelium-derived nitric oxide is an important endogenous modulator of neutrophil adhesion, but the effect is not mediated by a cGMP-dependent regulation of F-actin levels.Deceased.  相似文献   

15.
Failure of bone and joint implants has been attributed mainly to poor bonding of the implant to bone tissue, and to bacterial infection. The probability of successful osseointegration or implant infection depends on the race for the surface between tissue cells and bacteria. One promising strategy to enhance tissue integration is to develop a selective biointeractive surface that increases bone cell (osteoblast) function while decreasing bacterial adhesion. In this in vitro study, the surface of titanium alloy substrates was first functionalized by covalently grafted oxidized dextran, which is known to have activity against bacterial adhesion. Bone morphogenetic protein-2 (BMP-2) was then covalently linked to dextran-grafted surfaces through a chemical conjugation process. The composition and properties of the surface were investigated by X-ray photoelectron spectroscopy and by measuring the surface density of BMP-2 using an enzyme-linked immunosorbent assay. Bacterial adhesion was assayed with Staphylococcus aureus and Staphylococcus epidermidis. Bacterial adhesion on both the dextran and dextran-BMP-2-functionalized surfaces was significantly decreased compared to that on the pristine substrates. Further, the dextran-BMP-2 modified substrates with a surface protein density of >50 ng/cm(2) or higher significantly promoted osteoblast spreading, alkaline phosphatase activity, and calcium mineral deposition. Thus, the results from this study suggest that surface grafting of dextran in conjunction with the bone growth factor BMP-2 on metal surfaces can enhance tissue integration of implants through the dual functions of reducing bacterial adhesion and promoting osteoblast functions.  相似文献   

16.
Polystyrene surfaces grafted with a nonfouling interfacial interpenetrating polymer network (IPN) of poly(acrylamide-co-ethylene glycol/acrylic acid) [p(AAm-co-EG/AAc)] were modified with several peptide ligands adapted from bone sialoprotein (BSP). IPNs were modified with both single ligands and ligand blends to study the correlation between a simple metric, ligand-receptor adhesion strength, and the extent of matrix mineralization for osteoblast like cells (rat calvarial osteoblasts). The ligands studied included RGD cell-binding [CGGNGEPRGDTYRAY (l-RGD), CGGEPRGDTYRA (s2-RGD), CGPRGDTYG (lc-RGD), cyclic(CGPRGDTYG) (c-RGD), and CGGPRGDT (s-RGD)], heparin binding (CGGFHRRIKA), and collagen binding (CGGDGEAG) peptides, with the appropriate controls. Adhesion strength scaled with ligand density (1-20 pmol/cm(2)) and was dependent on ligand type with the following trend: l-RGD > s2-RGD approximately c-RGD > s-RGD approximately lc-RGD > FHRRIKA approximately DGEA. Independent of ligand density, % matrix mineralization varied with ligand type resulting in the following trend: lc-RGD > s2-RGD > l-RGD approximately c-RGD > s-RGD > FHRRIKA. The Tyr (Y) residue immediately following the RGD cell-binding domain proved to be critical for stable cell proliferation and mineralization, since removal of this residue resulted in erratic cell attachment and mineralization behavior. The minimum BSP sequence necessary for strong adhesion and extensive mineralization was CGGEPRGDTYRA; the minimal sequence suitable for extensive mineralization but lacking strong adhesion was CGPRGDTYG. The cyclic peptide (c-RGD) had much greater adhesion strength compared to its linear counterpart (lc-RGD). The calculated characteristic adhesion strength (F(70)) obtained using a centrifuge adhesion assay proved to be a poor metric for predicting % mineralized area; however, in general, surfaces possessing a F(70) > 100g promoted extensive matrix mineralization. Percent mineralization and number of mineralized nodules scaled with number of cells seeded suggesting a critical dependence on the initial number of osteoprogenitors in culture. This study demonstrates matrix mineralization dependence on ligand type, ligand density, and adhesion strength. The high-throughput character of these surfaces allowed efficient investigation of multiple ligands at multiple densities providing an excellent tool for studying ligand-receptor interactions under normal cell culture conditions with serum present.  相似文献   

17.
This paper describes a study of surface derivatisation methods applied to two-dimensional polymer matrices microfabricated using the Pressure-Assisted Microsyringe (PAM) technique. A blend of polylactide and polycaprolactone was used as the matrix material, and surface chemistry techniques based on silanes and polyethyleneglycol (PEG) derivatives were employed to render the surface underlying the scaffold anti-adhesive whilst polylysine was covalently coupled to the surface of the polymer matrix to enhance cell adhesion. Prior to cell-adhesion tests, the surfaces and matrices were analysed using physico-chemical techniques, such as surface tension, surface potential and fluorescence. Adhesion of primary endothelial cells was evaluated using cell counting techniques. The results demonstrate that both PEGs and silanes are about 66% efficient at demarcating endothelial cell adhesion in short term experiments and that covalently-bound polylysine to the polymer matrix increases cell adhesion twofold with respect to the adsorbed polypeptide.  相似文献   

18.
Polymeric substrates of different surface chemistry and length scales were found to have profound influence on cell adhesion. The adhesion of fibroblasts on surfaces of oxidized polystyrene (PS), on surfaces modified with random copolymers of PS and poly(methyl methacrylate) [P(S-r-MMA)] with topographic features, and chemically patterned surfaces that varied in lateral length scales from nanometers to microns were studied. Surfaces with heterogeneous topographies were generated from thin film mixtures of a block copolymer, PS-b-MMA, with homopolymers of PS and PMMA. The two homopolymers macroscopically phase separated and, with the addition of diblock copolymer, the size scales of the phases decreased to nanometer dimensions. Cell spreading area analysis showed that a thin film of oxidized PS surface promoted adhesion whereas a thin film of P(S-r-MMA) surface did not. Fibroblast adhesion was examined on surfaces in which the lateral length scale varied from 60 nm to 6 microm. It was found that, as the lateral length scale between the oxidized PS surfaces decreased, cell spreading area and degree of actin stress fiber formation increased. In addition, scanning electron microscopy was used to evaluate the location of filopodia and lamellipodia. It was found that most of the filopodia and lamellipodia interacted with the oxidized PS surfaces. This can be attributed to both chemical and topographic surface interactions that prevent cells from interacting with the P(S-r-MMA) at the base of the topographic features.  相似文献   

19.
This paper describes a study of surface derivatisation methods applied to two-dimensional polymer matrices microfabricated using the Pressure-Assisted Microsyringe (PAM) technique. A blend of polylactide and polycaprolactone was used as the matrix material, and surface chemistry techniques based on silanes and polyethyleneglycol (PEG) derivatives were employed to render the surface underlying the scaffold anti-adhesive whilst polylysine was covalently coupled to the surface of the polymer matrix to enhance cell adhesion. Prior to cell-adhesion tests, the surfaces and matrices were analysed using physico-chemical techniques, such as surface tension, surface potential and fluorescence. Adhesion of primary endothelial cells was evaluated using cell counting techniques. The results demonstrate that both PEGs and silanes are about 66% efficient at demarcating endothelial cell adhesion in short term experiments and that covalently-bound polylysine to the polymer matrix increases cell adhesion twofold with respect to the adsorbed polypeptide.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号