首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Our study compares the bone mass of Hawaiian, Filipino, Japanese, and white women living in Oahu, Hawaii. Eligible women ranged in age from 25 to 34; all had bone mass measurements at the spine, calcaneus, and proximal and distal radius. Their average bone mineral density (BMD) remained stable with age at all four bone sites, indicating that the age range 25–34 may represent the peak bone mass. Bone mass varied, however, between ethnicities; differences in BMD up to 11% were observed. The Hawaiian women had the greatest BMD, and whites had the second greatest BMD at the spine and calcaneus. The Japanese most frequently had the lowest BMD. Differences in body size partly explained the differences; most ethnic differences were reduced or eliminated after adjusting for height and weight. At the spine, the ethnic differences for BMD were also apparent with BMC and with vertebral area. Hawaiian and white women had greater values than Japanese or Filipino women. Differences at the proximal radius resembled the spine, except that whites had the widest proximal widths. The results were more complex for the distal radius. At the distal radius whites had the lowest BMD of the four ethic groups. The difference between whites and Hawaiians derived from the greater bone mineral content (BMC) of the Hawaiian women. By contrast, the difference between whites and the Japanese and Filipinos derived from the wider distal widths of the white women. Compared with the Japanese and Filipino women, the white women appeared to disperse their BMC at the distal radius across a wider bone width. Such differences in bone distributions might lead to an altered risk of distal radius (wrist) fractures. Within ethnicities there was marked variation among individuals in bone mass. At the extremes, women differed by 50–100% or more within all four ethnic groups.  相似文献   

2.
Normative bone mineral density (BMD) and bone mineral content (BMC) values for the total body (TB), proximal femur (PF), and antero-posterior lumbar spine (LS) were obtained from a large cross-sectional sample of children and adolescents who were 8–17 years of age. There were 977 scans for the TB, 892 for the PF, and 666 for the LS; bone mineral values were obtained using a HOLOGIC QDR 2000 in array mode. Data are presented for the subregions of the PF (femoral neck, trochanter, intertrochanter, and the total region) and for the LS (L1–L4 and L3). Female and male values for the FN, LS (L1–L4), and the TB were compared across age groups using a two-way ANOVA. In addition, we compared the 17-year-old female values to a separate sample of young adult women (age 21). At all these sites, BMC and BMD increased significantly with age. There was no gender difference in TB BMC until age 14 or in TB BMD until age 16, when male values were significantly greater. Females had significantly greater LS BMC at ages 12 and 13, but by age 17 the male values were significantly greater. Females had significantly greater LS BMD across all age groups, however. Males had significantly greater FN BMC and BMD across all age groups. There were no significant differences in BMC or BMD at any sites between the 17- and 21-year-old women. Received: 29 September 1995 / Accepted: 1 April 1996  相似文献   

3.
The purpose of this cross-sectional study was to investigate the influence of two different types of weight-bearing activity, muscle strength, and body composition on bone mineral density (BMD), bone mineral content (BMC), and bone area in three different groups of late adolescent girls. The first group consisted of 10 females participating in competitive rope-skipping (age 17.8 ± 0.8 years) training for 6.7 ± 3.1 hours/week; the second group consisted of 15 soccer players (age 17.4 ± 0.8 years) training for 6.1 ± 2.0 hours/week; and the third group consisted of 25 controls (age 17.6 ± 0.8 years) with physical activity of 0.9 ± 1.1 hours/week. The groups were matched for age, height, and weight. BMD (g/cm2), BMC (g), and bone area (cm2) of the total body, lumbar spine, hip, total femur, distal femur, diaphyses of femur and tibia, proximal tibia, and humerus were measured using dual-energy X-ray absorptiometry (DXA). Bone density was also assessed in the radial forearm site of the dominant limb in the rope skippers and in 10 matched controls. The rope skippers had 22% higher BMD at the ultradistal site (P < 0.01). Both high-activity groups had significantly higher BMD (P < 0.05) at most loaded sites compared with the control group. When adjusting for differences in lean mass and starting age of sport-specific training between the activity groups, the rope-skipping group had a higher BMD of the total body, lumbar spine, and right humerus compared with the soccer group. They also had a significantly higher bone area of the total body, total femur, and the proximal femur than both other groups, and a significantly higher bone area of the tibia diaphysis, compared with the soccer group. In a multivariate analysis among all subjects (n = 50), all BMD sites, except the femur diaphysis, distal femur, and proximal tibia, were significantly related to type of physical activity (β= 0.25–0.43, P < 0.05). The bone area values at different sites were strongly related to muscle strength and parameters related to body size [height, weight, lean mass, fat mass, and body mass index (BMI)]. In conclusion, it appears that in late adolescent women, weight-bearing activities are an important determinant for bone density, and high impact activities such as jumping also seem to be associated with a modification of the bone geometry (hence, the bone width) at the loaded sites. Received: 28 June 1999 / Accepted: 22 March 2000  相似文献   

4.
The objective of this prospective controlled study was to determine whether the osteogenic response of bone to mechanical loading is dependent on the vitamin D receptor (VDR) polymorphism. Thirty-five healthy premenopausal women took part in a progressive, high-impact exercise three times a week for a period of 18 months and 45 women served as nonexercising controls. The trainees were divided into three groups: bb (n = 12, 34%); Bb (n = 16, 46%); BB (n = 7, 20%) according to polymorphism at the gene encoding the VDR (BB representing subjects without the restriction enzyme BsmI sites on the two VDR gene alleles). Bone mineral content (BMC) and areal bone mineral density (BMD) were measured at the lumber spine, proximal femur, knee, calcaneus, and dominant distal radius before the beginning of the exercise regimen and at 12 and 18 months of training using dual-energy x-ray absorptiometry (DXA). As an indicator of the total osteogenic effect of the training, ΣBMC was derived by summing up the BMC values of the loaded sites (i.e., the lower limb sites and the lumbar spine). The mean ΣBMC increased 2.0% in the bb group, 3.0% in the Bb group, and 2.8% in the BB group (P= 0.184 for the intergroup difference), but only 0.8% in the controls (exercisers versus controls, P < 0.001). Individuals with the BB genotype of the VDR gene, subjects with whom the BMC can be lower than normal and whose bones can be less responsive to pharmacological therapies than bones of the other individuals, seem to have as good osteogenic response to mechanical loading as subjects with other VDR genotypes. Thus, irrespective of the VDR genotype, physical activity seems to be beneficial for bones of premenopausal women. Received: 14 May 1997 / Accepted: 14 November 1997  相似文献   

5.
The purpose of this study was to examine the difference in lifestyle and morphometric factors that affect bone mineral and the attainment of peak bone mass in 168 healthy Asian (n = 58) and Caucasian (n = 110) Canadian, prepubertal girls and boys (mean age 8.9 ± 0.7) living in close geographical proximity. DXA (Hologic 4500) scans of the proximal femur (with regions), lumbar spine, and total body (TB) were acquired. We report areal bone mineral densities (aBMD g/cm2) at all sites and estimated volumetric density (νBMD, g/cm3) at the femoral neck. Dietary calcium, physical activity, and maturity were estimated by questionnaire. Of these prepubertal children, all of the boys and 89% of the girls were Tanner stage 1. A 2 × 2 ANOVA demonstrated no difference between ethnicities for height, weight, body fat, or bone mineral free lean mass. Asian children consumed significantly less dietary calcium (35%) on average and were significantly less active (15%) than their Caucasian counterparts (P < 0.001). There were significant ethnicity main effects for femoral neck bone mineral content (BMC) and αBMD (both P < 0.001) and significant sex by ethnicity interactions (P < 0.01). The Asian boys had significantly lower femoral neck BMC (11%), aBMD (8%), and νBMD (4.4%). At the femoral neck, BMFL mass, sex, and physical activity explained 37% of the total variance in aBMD (P < 0.05). In summary, this study demonstrated differences in modifiable lifestyle factors and femoral neck bone mineral between Asian and Caucasian boys. Received: 21 July 1998 / Accepted: 30 September 1999  相似文献   

6.
Bone mass and bone geometry are considered to have independent effects on bone strength. The purpose of this study was to obtain data on bone mass and geometry in young female populations and how they are influenced by body size and lifestyle factors. In a cross-sectional, observational study in six European countries, 1116 healthy Caucasian girls aged 11–15 and 526 women aged 20–23 participated. Their radius was scanned at the ultradistal site and at a site approximately 30% of the radius length from the distal end with dual energy X-ray absorptiometry (DXA). The following parameters were assessed from the scans: bone mineral content (BMC), bone mineral density (BMD), cortical wall thickness (CWT), middistal diameter (D), cortical index (CI = 2CWT/D), and the Breaking Bending Resistance Index (BBRI = (D4− [D-CWT]4)/D). Calcium intake was assessed by 3-day food records and physical activity by questionnaire. Body size parameters were measured by anthropometry. All parameters showed an increasing trend with pubertal stage and age, except for physical activity and calcium intake. BMC and BMD were relatively more dependent on body weight and age at menarche, whereas variation in D and the mechanical index BBRI was better explained by differences in height and grip strength. CI and CWT were relatively independent of variation in body size, whereas BMC and BBRI especially were explained for a substantial proportion (25–33% in the young adults) by body size parameters. Dietary intake of calcium and level of physical activity seem to contribute little to variation in bone parameters. Received: 1 October 1998 / Accepted: 26 July 1999  相似文献   

7.
The purpose of this study was to determine if differences exist in premenopausal women between z-scores for lumbar spine and proximal femoral bone mineral densities (BMD). Participants were 237 women ranging in age from 20 to 45 years. BMDs of the lumbar spine and proximal femur (femoral neck, Ward's area, and trochanter) were assessed using dual-energy X-ray absorptiometry (Lunar DPX). Mean (±SD) age, height, and weight of the participants were 29.4 ± 6.9 years, 164.4 ± 6.1 cm, and 64.9 ± 12.1 kg, respectively. Lumbar spine BMD and BMD at the femoral neck, Ward's area, and trochanter were significantly correlated with large SEEs (r = 0.59–0.65; SEE = 0.09–0.11). No positive correlation with age and BMD at any site was seen in this population but a significant negative correlation with age was seen in the proximal femur beginning at age 30. Twenty to 24% of the 20–29-year-olds exhibited a difference in z-scores of greater than 1 between the spine and sites in the proximal femur. This percentage increased to 32–46% in the 30–45-year-olds but the nature of the observed differences changed. The differences in spine and proximal femoral z-scores that are seen in the older age group appear to be the result of the earlier onset of bone loss in the proximal femur rather than an initial difference in peak bone mass which has been maintained. Received: 28 August 1996 / Accepted: 25 April 1997  相似文献   

8.
We examined the magnitude of regional variations in bone mass among elderly, Japanese-American men and women. All subjects had bone measurements at the calcaneus, and at the distal and proximal radius sites. A subset of the women had, in addition, spine bone mass measurements. To provide a common measurement scale, the bone measurements were converted to age- and sex-specificZ-scores. TheZ-scores between pairs of bone sites were then subtracted to yield the differences in bone mass between bone sites (expressed inZ-score units). For most individuals the differences were less than 1.0Z-score; however, 12%–20% of the differences were at least 1Z-score apart. The most similar sites were the distal and proximal radius: different regions within the same bone. Among the other bone pairs, the calcaneus and spine were the most similar to one another. The magnitudes of the differences in bone mass were associated with height and weight. Heavier subjects, for instance, had greater calcaneus than radius bone mass measurements, and greater spine than radius measurements. The spine and calcaneus are more weight-bearing than the radius sites. Associations were observed up to 0.25Z-score per 10 kg difference in weight. Height was associated with bone mass differences in an opposite direction to weight. Taller subjects had greater bone mass at the radius sites than expected from their calcaneus or spine bone measurements (0.1 to 0.2Z-score difference per 5 cm difference in height). Bone width partly explained the associations with height; that is, adjusting the radius widths reduced the associations with height. Overall, our results indicate that small to moderate differences between bone sites were common among our study population, and that the magnitudes of the differences were associated with height and weight.  相似文献   

9.
In the present study, we compared the bone mineral content (BMC) and bone mineral density (BMD) in the arms of 11 female volleyball players (mean age 22.0 ± 2.6 years) training for about 8 hours/week, and 11 nonactive females aged 24.6 ± 3.1 years (mean ± SD) not participating in regular or organized sport activity. Using dual X-ray absorptiometry (DXA), BMC was measured in the proximal and distal humerus, and BMD in the distal radius. Isokinetic concentric peak torque (highest value attained during 5 or 10 repetitions) of the rotator muscles of the shoulder and flexor and extensor muscles of the elbow were measured using an isokinetic dynamometer. The volleyball players had significantly higher BMC (P < 0.05) at the proximal humerus of the dominant arm compared with the nonactive group, but there were no differences between the groups in BMC of the distal humerus and BMD of the distal radius. In the volleyball players, BMC was significantly higher at the proximal humerus, at the distal humerus, and at the distal radius in the dominant compared with the nondominant arm. In the nonactive group, there were no significant differences in BMC and BMD between the dominant and nondominant arm at any site measured. Except for shoulder internal rotation strength and elbow flexion strength at 90°/second that was higher in the dominant arm in the volleyball players, there were no significant differences in muscle strength of the rotator muscles of the shoulder and flexor and extensor muscles of the elbow between the dominant and nondominant arm in the volleyball players and nonactive controls. In the volleyball players, but not in the nonactive controls, there were several significant relationships between shoulder and elbow strength and BMC at the distal humerus of the dominant and especially the nondominant arm. These results show that young female volleyball players have a higher bone mass in the proximal humerus, distal humerus, and distal radius in the dominant compared with the nondominant arm, and a higher bone mass in the proximal humerus compared with nonactive controls. Muscle strength of the rotator muscles of the shoulder is not related to the higher bone mass in the proximal humerus of the dominant arm. Theoretically, the observed differences in bone mass can be related to the type of loading the skeleton undergoes when playing volleyball. Received: 21 June 1996 / Accepted: 3 September 1997  相似文献   

10.
Bone Density of the Spine and Femur in Adult White Females   总被引:14,自引:0,他引:14  
We measured bone mineral density (BMD in g/cm2) of the spine (L2-L4) and femur (four regions) in 1472 and 1487 cases, respectively, of ambulatory white women ages 20–79 years in the USA. A DPX densitometer was used in a mobile setting. The BMD values for women up to 69 years corresponded closely with published values for the USA, the UK, and northern Europe; our values were somewhat lower than those from other studies only in women over 70 years. The USA data were combined with data from Europe to give reference curves on about 12,000 subjects. Decreases of BMD with age in women below 50 years were much smaller than in older women (0.2% versus 0.6–1.0% per year). Femoral bone decreased from the neck region, but not the trochanter with age; the decrease of total femur BMD with age was due to loss from the former region. Loss of bone mineral content (BMC in g) from the femur neck and total femur region did not accelerate until after age 50 years, much like the spine. The apparent decrease of BMD in these regions that begins about age 40 actually is due to an increase of bone area. About 20% of USA women aged 50–79 years had BMD levels for the lumbar spine, or for the femur neck, more than −2.5 SD below the average values in young adult women 20–39 years old. Body weight had several times more impact on BMD than height, and in fact, a change of 1 kg in postmenopausal women was commensurate with the effect of a 1-year change in age. Subjects in the lowest quartile of body weight had T-scores that were 1 SD below those in the highest quartile. Received: 10 September 1998 / Accepted: 15 December 1998  相似文献   

11.
The objective of this 1-year prospective follow-up study was to assess, with dual-energy X-ray absorptiometry (DXA), the effect of an anterior cruciate ligament (ACL) injury of the knee on areal bone mineral density (BMD) of the injured extremity and lumbar spine in two separate patient groups: 21 surgically treated patients (group A) and 12 conservatively treated patients (group B). Clinical and functional status of the patients and BMD of the spine (L2–L4), dominant distal radius, femoral neck, trochanter area of the femur, distal femur, patella, proximal tibia, and calcaneus of both lower extremities were determined at the time of the injury and after 4, 8, and 12 months. A surgically treated, complete ACL rupture (group A) resulted in considerable and statistically significant bone loss to the affected knee (distal femur 21%, patella 17%, proximal tibia 14%; P < 0.001 in each), whereas the other sites were clearly less affected. Patients with a conservatively treated, complete or partial ACL injury (group B) had only a small but statistically significant bone loss at the patella (−3%; P= 0.005) and proximal tibia (−2%; P= 0.022) of the injured knee, and the other sites remained unchanged. The obvious differences between the groups A and B in the severity of the injury itself (complete or partial tear), its treatment (surgical or conservative), and subsequent rehabilitation (longer nonweight-bearing times in group A) explain these different BMD results, and the forthcoming years will show whether the considerable posttraumatic osteoporosis in the affected knee of group A patients will finally recover, and if so, to what extent. Received: 16 June 1998 / Accepted: 6 October 1998  相似文献   

12.
While several studies have described the rate and pattern of involutional bone loss in women, far less information is available for men. Furthermore, the roles of lifestyle and body build in determining bone loss rate in both sexes have been largely extrapolated from cross-sectional studies. We addressed this issue in a population-based longitudinal study which sought to ascertain rates of bone loss at the femoral neck and lumbar spine in a cohort of men and women aged 60–75 years at baseline, and to relate this loss to anthropometric and lifestyle variables. We additionally investigated the capacity of biochemical markers of bone turnover to predict bone loss rates in these subjects. Women lost bone at all sites; this ranged from 0.20%/year at the lumbar spine to 1.43%/year at the femoral trochanteric region. By contrast, men lost only 0.20%/year at the trochanteric region, and gained at the lumbar spine (0.33%/year) and at Ward’s triangle (0.27%/year) over the 4-year period. Anthropometric measurements were associated with bone loss in both sexes; lower baseline body mass index (BMI) and a greater rate of loss of adiposity over the follow-up period were both associated with greater bone loss at all proximal femoral sites. These attained statistical significance after Bonferroni correction at the total proximal femur among both men (r= 0.29), p<0.01) and women (r= 0.31, p<0.05). Lifestyle factors associated with lower rates of bone loss (after adjustment for BMI) included alcohol consumption at the femoral neck among women (p= 0.007) and physical activity at the lumbar spine among men (p = 0.05). Serum parathyroid hormone, 25-hydroxyvitamin D and biochemical markers of bone turnover did not predict bone loss after adjustment for adiposity. Received: 8 December 1998 / Accepted: 8 April 1999  相似文献   

13.
To elucidate the possible skeletal benefits of the muscular contractions and the nonweight-bearing loading pattern associated with kayaking, we investigated the bone mineral density (BMD, g/cm2) of 10 elite kayakers, six males and four females, with a median age of 19 years. Each subject was compared with the mean value of two matched controls. BMD of the total body, head, ribs, humerus, legs, proximal femur (neck, wards, trochanter), spine, lumbar spine, and bone mineral content (BMC, g), of the arms was obtained using a dual energy X-ray absorptiometer (DXA). Body composition was also assessed. The kayakers had a significantly (P < 0.05–0.01) greater BMD in most upper body sites: left and right humerus (10.4% and 11.7%), respectively, ribs (6.4%), spine (10.9%), and a greater BMC of the left and right arm (15.7% and 10.6%, respectively). No significant differences in the BMD of the total body, head, or any of the lower body sites were found, except for the pelvis, which was significantly greater in kayakers (5.1%). The controls had a significantly lesser lean body mass (10.4%) and greater percentage of body fat (19.5%) than the kayakers. Bivariate correlation analysis in the controls demonstrated significant and strong relationships between BMD in upper body sites and lean body mass, weight, and fat; the effects of training seem to outweigh most such relationships in kayakers. In conclusion, it seems that the loading pattern and muscular contractions associated with kayaking may result in site-specific adaptations of the skeleton. Received: 21 April 1998 / Accepted: 1 October 1998  相似文献   

14.
Bone Mineral Density in the Chronic Patellofemoral Pain Syndrome   总被引:4,自引:0,他引:4  
Bone mineral density (BMD) and clinical status of 40 patients with a chronic, unilateral patellofemoral pain syndrome (PFPS) were determinated. The mean duration of the disease at the time of the follow-up was 7.6 ± 1.8 (SD) years. The BMD was measured at the spine (L2–L4), and the femoral neck, trochanter area of the femur, distal femur, patella, proximal tibia, and calcaneus of both lower extremities using a dual-energy X-ray absorptiometric (DXA) scanner. The mean BMD of the affected limb (compared with the unaffected side) was significantly lower in the distal femur (−3.3%; P= 0.002), patella (−2.5%; P= 0.016), and proximal tibia (−1.9%; P= 0.008). The femoral neck, trochanter area of the femur, and calcaneus showed no significant side-to-side differences, and the spinal BMDs of men and women with the PFPS were comparable with the manufacturer's age-adjusted reference values for Western European men and women. The relative BMDs of the affected knee showed strongest correlation with the muscle strength of the same knee: the better the muscle strength compared with the healthy knee, the higher the relative BMD (r = 0.56–0.58 with P < 0.001 in each anatomic site of the knee). In the stepwise regression analysis, low body weight or low body mass index, high level of physical activity, the patient's good subjective overall assessment of his/her affected knee, and short duration of the symptoms were also independent predictors of the high relative BMD in the affected knee so that along with the muscle strength these variables could account for 51% of the variation seen in the relative BMD of the femur, 61% in the patella, and 54% in the proximal tibia. In conclusion, chronic patellofemoral pain syndrome results in a significantly decreased BMD in the knee region of the affected limb. The spine, proximal femur, and calcaneus are not affected. Recovery of normal muscle strength and knee function seems to be of great importance for good BMD. Received: 30 May 1997 / Accepted: 8 January 1998  相似文献   

15.
The associations between a number of reproductive and menopausal factors and bone mineral density (BMD) were studied in a sample of early postmenopausal women. The study included 580 women aged 45–61 years who completed a risk factor questionnaire containing sections on obstetric and menstrual history. BMD measurements were taken at the anteroposterior (AP) spine, greater trochanter, femoral neck, total radius and whole body, along with whole body bone mineral content (BMC). In analyses adjusting for key confounders, number of pregnancies was more strongly associated with increased BMD than number of live births at all sites (p<0.05 at femoral neck and total radius), and menstrual years was more strongly associated with increased BMD than years since menopause (p<0.05 at all sites). Hysterectomized women had a significantly higher adjusted mean BMD than non-hysterectomized women at all sites (AP spine: 0.999 g/cm2 vs 0.941 g/cm2, p<0.001), although there were no significant differences in BMD between hysterectomized women who had a bilateral oophorectomy and those whose ovaries were preserved. Negative associations between the duration of hot flushes and BMD were statistically significant (p<0.05) at the three non-hip sites. In multiple regression analyses containing all reproductive terms, duration of hormone replacement therapy (HRT) use, menstrual years and hysterectomy status were significantly associated with BMD at all five sites, whilst oral contraceptive use before the age of 23 years was significantly associated with increased BMD at all sites except the total radius. Breastfeeding duration, the duration of oral contraceptive use and premenopausal amenorrhea were found to have no association with BMD. Results for whole body BMC were consistent with those for the five BMD sites, across all the variables considered here. These findings confirm the importance of HRT use and duration of menses as predictors of BMD, whilst the results for hysterectomy status and early oral contraceptive use require further consideration. Received: 26 July 2000 / Accepted: 5 April 2001  相似文献   

16.
This study investigated whether bone turnover influences the response to alendronate in women with postmenopausal osteoporosis. One hundred postmenopausal osteoporotic women were randomized to receive either alendronate (10 mg/day) plus calcium (1000 mg/day) (n = 50) or calcium alone (n = 50). Vertebral and radial bone density, measured by DXA, and markers of bone turnover were assessed at baseline and after 1 and 2 years. At the end of treatment, alendronate users showed an increase of 5.0% and 2.3%, respectively, at the lumbar spine and ultradistal radius; in the group treated only with calcium, bone mineral density (BMD) decreased by 1.6% at the lumbar spine and 1.3% at the ultradistal radius. The difference between the two groups was significant (P < 0.001). The patients were divided into high (HT) or low (LT) bone turnover groups, as assessed by 24-hour whole body retention (WBR%) of 99mTc-methylene-diphosphonate. The response to alendronate treatment was greater in HT patients compared with LT patients. In fact, at the end of the study period, BMD at the lumbar spine had increased by 7.9% in HT patients and by 3.0% in LT patients; the difference between the two groups was significant (P < 0.001). No significant difference between the two groups was found for BMD at the ultradistal radius. In conclusion, the present study demonstrates that 2-year treatment with alendronate has highly positive effects on bone mass at both the lumbar spine and ultradistal radius. The increase in bone mass, especially at the axial level, is influenced by bone turnover. Therefore, the evaluation of bone turnover may be useful in predicting the response to alendronate treatment. Received: 23 April 1998 / Accepted: 10 June 1999  相似文献   

17.
Summary Bone mineral content (BMC) and bone mineral density (BMD) of the spine (L2–L4) and hip (at femoral neck, Ward's triangle, and greater trochanter sites) were determined by dual-photon absorptiometry (DPA), and of the radius by single-photon absorptiometry (SPA) in healthy postmenopausal women aged 40–70 years. The relationships of BMC and BMD to years since menopause were examined separately in 97 women who were above 115% of ideal body weight (IBW) and in 128 women below. The heavier women had significantly greater mean BMC and BMD at each site than did the normal-weight women. In the normal-weight women, there was a significant negative correlation between BMD and years since menopause at each measurement site except the greater trochanter. In the obese women, BMD decreased with increasing years since menopause at the radius site only and BMC declined with increasing years after menopause at the hip (femoral neck and Ward's triangle region) as well as the radius. Thus, body size is a significant determinant of BMD in this population. The pattern of loss of BMD from Ward's triangle and femoral neck regions of hip are similar to that of the spine. The BMC and BMD findings in the hip suggest that remodeling occurs at this weight-bearing site which has a favorable effect on bone strength.  相似文献   

18.
INTRODUCTION: Canadian Aboriginal women are at increased risk of fracture compared with the general population. HYPOTHESIS: There is disproportionately reduced bone density in Aboriginal women as compared to white females of similar age. METHODS: A random age-stratified (25-39, 40-59 and 60-75) sample of Aboriginal women (n=258) and white women (n=181) was recruited. All subjects had calcaneus and distal forearm bone density measurements, and urban participants (n=397 [90.4%]) also had measurements of the lumbar spine, hip and total body. RESULTS: Unadjusted measurements were similar in the two groups apart from the distal forearm which showed a significantly lower mean Z-score in the Aboriginal women (p=0.03). Aboriginal women were heavier than white women (81.0+/-18.0 kg vs. 76.0+/-18.0 kg, p=0.02). Weight was directly associated with BMD at all measurement sites (p<0.00001) and potentially confounded the assessment of ethnicity on bone mass measurements. Weight-adjusted ANCOVA models demonstrated significantly lower bone density in Aboriginal than white women for the calcaneus, distal forearm, and total body (all p<0.05), but not at the other sites. ANCOVA models (adjusted for age, height and weight) were used to explore differences in bone area and bone mineral content (BMC). There was a significant effect of ethnicity on bone area with Aboriginal women having larger adjusted mean values than white women (lumbar spine p=0.038, total hip p=0.0004, total body p=0.020). In contrast, there was no detectable effect of ethnicity on BMC (all p>0.2). CONCLUSIONS: We identified significant site-specific differences in age-and weight-adjusted bone density for Aboriginal and white women. Larger bone area, rather than a reduction in BMC, appeared to be primarily responsible. Further work is needed to define how these differences in bone density and geometry affect indices of bone strength.  相似文献   

19.
Studies of the effect of exercise programs on bone mass appear inconsistent. Our objective was to systematically review and meta-analyze randomized trials of the effect of exercise on bone mass in pre- and postmenopausal women. A computerized MEDLINE search was conducted for the years 1966–1997. Thirty-five randomized trials were identified. Meta-analytic methods were used to statistically pool results of studies of the effect of impact (e.g., aerobics) and non-impact (e.g., weight training) exercise on the lumbar spine and femoral neck. The most studied bone site was the lumbar spine in postmenopausal women (15 studies), where both impact [1.6% bone loss prevented, 95% confidence intervals (CI): 1.0%–2.2%] and non-impact (1.0%, 95% CI: 0.4%–1.6%) exercise programs had a positive effect. Results for the lumbar spine in premenopausal women (eight studies) were similar: 1.5% (95% CI: 0.6%–2.4%) less bone loss (or net gain) after impact exercise and 1.2% (95% CI: 0.7%–1.7%) after non-impact exercise. Impact exercise programs appeared to have a positive effect at the femoral neck in postmenopausal women (five studies), 1.0% (95% CI: 0.4%–1.6%) bone loss prevented, and possibly in premenopausal women, 0.9% (95% CI: −0.2%–2.0%) bone loss prevented. There were too few trials to draw conclusions from meta-analyses of the effect of nonimpact exercise on the neck of femur. This systematic review of randomized trials shows that both impact and non-impact exercise have a positive effect at the lumbar spine in pre- and postmenopausal women. Impact exercise probably has a positive effect at the femoral neck. More studies are required to determine the optimal intensity and type of exercise. Received: 11 May 1999 / Accepted: 18 January 2000  相似文献   

20.
The total skeletal bone mineral content (BMC), bone mineral density (BMD), bone size, and body composition were measured by dual-energy x-ray absorptiometry (DXA) in all professional male football players of a 1st division team (n = 24) and age- and BMI-matched (n = 22) controls (less than 3 hours of recreational sport activities per week). Average (±1 SD) age of the athletes was 22.6 ± 2.5 years. Intensive training is conducted during 48 weeks a year for 20–22 hours/week. The length of the registered playing career before the study was 8.2 ± 2.7 years. Total skeleton BMC was 18.0% (P < 0.001) greater in the football players. The difference resulted from the sum of 5.2% (P < 0.02) increment of bone size and 12.3% (P < 0.001) increment of BMD. The analysis of skeletal subareas revealed that the difference of the BMC and BMD was greater at the level of the pelvis and legs compared with the arms or trunk. The BMC and BMD of the head was equal for both groups. Also, the bone size of the legs and pelvis was significantly greater for the players compared with controls; there was no difference at the level of the arms or head. Within the group of football players the increment of total skeleton BMD was similar in the young players, with less than 7 years of practice (age 20.6 ± 0.9 years) compared with relative older players (age 24.6 ± 1.9) with more than 7 years of practice. Lean body mass was significantly greater in the players (63.3 ± 4.0 kg) compared with the controls (56.7 ± 3.6, P < 0.001) whereas fat mass was markedly lower (9.4 ± 2.9 kg versus 14.9 ± 6.3 kg), P < 0.002). The BMD of the controls was significantly correlated to total weight, height, and lean mass whereas the BMD of the players was only correlated to muscle mass. The calcium intake from dairy products was similar in both groups. The range of calcium intake was wide among the players (184–2519 mg/day) but it was not significantly correlated to BMD (r = 0.03). In conclusion, male professional football players develop a significant increment of BMC as a result of increased bone size and density. This is already present at the end of the second decade and maintained at least to the end of the third decade in active players. As in other high impact loading sports, the effect on area is specific involving mainly the pelvis and legs. The increment was totally unrelated to the calcium intake from dairy products. The fate of the increased BMC after intensive training is discontinued should be assessed. However, if the findings of the present cross-sectional study are supported by detailed longitudinal investigations, the presently reported observations might be important for the prevention of future osteoporotic fractures. Received: 8 August 1997 / Accepted: 26 January 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号