首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 919 毫秒
1.
Osteocytes, the most prevalent cell type in bone, appear to communicate via gap junctions. In limb-bone diaphyses, it has been hypothesized that these cellular networks have the capacity to monitor habitual strains, which can differ significantly between cortical locations of the same bone. Regional differences in microdamage associated with prevalent/predominant strain mode (tension, compression, or shear) and/or magnitude may represent an important "variable" detected by this network. This hypothesis was indirectly addressed by examining bones subjected to habitual bending for correlations of osteocyte lacuna population densities (n/mm(2) bone area, Ot.Lc.N/B.Ar) with locations experiencing high and low strain, and/or prevalent/predominant tension, compression, and shear. We examined dorsal ("compression"), plantar ("tension"), and medial/lateral ("shear" or neutral axis) cortices of mid-diaphyseal sections of calcanei of adult sheep, elk, and horses. Ot.Lc.N/B.Ar data, quantified in backscattered electron images, were also evaluated in a context of various additional structural and material variables (e.g. % ash, cortical thickness, porosity, and secondary osteon population). Results showed significant differences in dorsal versus plantar comparisons with the highest Ot.Lc.N/B.Ar in dorsal cortices of sheep and elk (p < 0.0001); but this was a statistical trend in the equine calcanei (p = 0.14). There were no consistent transcortical (pericortical to endocortical) differences, and Ot.Lc.N/B.Ar in neutral axes was not consistently different from dorsal/plantar cortices. Correlations of Ot.Lc.N/B.Ar with structural and material parameters were also poor and/or inconsistent within or between species. These results provide little or no evidence that the number of osteocyte lacunae has a functional role in mechanotransduction pathways that are typically considered in bone adaptation. Although dorsal/plantar differences may be adaptations for prevalent/predominant strain modes and/or associated microdamage, it is also plausible that they are strongly influenced by differences in the bone formation rates that produced the tissue in these locations.  相似文献   

2.
There is no detailed information available concerning the variations in bone, the Haversian canal, and osteocyte populations in different-sized osteons. In this study a total of 398 secondary osteons were measured in archived rib sections from nine white men (20-25 years old). The sections were stained with basic fuchsin. The parameters included the osteon area (On.Ar), Haversian canal area (HC.Ar) and perimeter (HC.Pm), bone area (B.Ar), and osteocyte lacunar number (Lc.N). From these primary measurements the following indices were deduced: 1) lacunar number per bone area (Lc.N/B.Ar) and per osteon (Lc.N/On); 2) the ratio between Haversian canal perimeter and bone area (HC.Pm/B.Ar); and 3) the fraction of Haversian canal area (HC.Ar/On.Ar) and its complement, the fraction of bone area (B.Ar/On.Ar). The results showed that the osteons varied greatly in size, but very little in the fraction of bone area. Regression analyses showed that HC.Ar, HC.Pm, and Lc.N/On were positively associated with On.Ar (P < 0.001 for all). A significant negative correlation was found between On.Ar and Lc.N/B.Ar (P < 0.05) and HC.Pm/B.Ar (P < 0.0001). HC.Ar and HC.Pm increased significantly with increasing Lc.N/On (both P < 0.0001) rather than Lc.N/B.Ar. Lc.N/B.Ar had a significant positive correlation with HC.Ar/On.Ar (P < 0.05) and HC.Pm/B.Ar (P < 0.01). We conclude that: 1) the size of the osteon is determined by the quantum of bone removed by osteoclasts, 2) the osteon is well designed for molecular exchange, and 3) a well designed osteon may be produced via the regulation of bone apposition by osteocytes during the process of osteon refilling.  相似文献   

3.
Previous research demonstrates that the size of secondary osteons varies considerably between individuals, though what factors act in the delineation of osteon size remain uncertain. This study explores the influence of age, sex, percent cortical area (%Ct.Ar), percent cortical porosity (%Po.Ar), and loading environment on osteon area (On.Ar) in human ribs. The sample consisted of midshaft 6th ribs from 80 individuals, 6–94 years of age. T‐tests demonstrated no significant differences in On.Ar between the sexes (P=0.383). Age showed a significant correlation with both %Ct.Ar and %Po.Ar, so a hierarchical regression model was used to control for the effects of age on the other variables. Results indicate that age is the most significant factor of those tested in this study (P=0.004), with %Ct.Ar playing a much smaller but still significant role (P=0.014), while %Po.Ar had no significant influence on On.Ar (P=0.443). Age demonstrates an inverse relationship with On.Ar, while %Ct.Ar has a direct relationship with On.Ar. Significant differences in On.Ar between the pleural and cutaneous cortices are attributed to variation in %Ct.Ar of each cortex. Therefore, age and %Ct.Ar account for the majority of osteon size variability in this study, although it is likely genetics play an important role as well. Understanding the biological mechanisms that act in remodeling and determine osteon size is essential for accurately addressing and interpreting histological findings, work that is invaluable in its implications for bone biology. Anat Rec, 299:313–324, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

4.
Osteocytes, which are embedded in bone matrix, are the most abundant cells in bone. Despite the ideal location of osteocytes to sense the local environment and influence bone remodeling, their functions, and the relative importance of these functions, remain controversial. In this study, we tested several hypotheses that address the possibilities that population densities of osteocyte lacunae (Ot.Lc.N/B.Ar) correlate with strain-, remodeling- or metabolism-related aspects of the local biomechanical environments of mid-third diaphyseal equine radii and third metacarpals from skeletally mature animals. Ot.Lc.N/B.Ar data, quantified in multiple cortical locations, were analyzed for possible correlations with (1) structural and material characteristics (e.g., cortical thickness, percent ash, secondary osteon population density, mean osteon cross-sectional area, and predominant collagen fiber orientation), (2) strain characteristics, including prevalent/predominant strain magnitude and mode (tension, compression, shear), (3) hypothesized strain-mode-related microdamage characteristics, which might be perceived by osteocyte 'operational' networks, and (4) variations in remodeling dynamics and/or metabolism (i.e. presumably higher in endocortical regions than in other transcortical locations). Results showed relatively uniform Ot.Lc.N/B.Ar between regions with highly non-uniform strain and strain-related environments and markedly heterogeneous structural and material organization. These results suggest that population densities of these cells are poorly correlated with mechanobiological characteristics, including local variations in metabolic rate and strain magnitude/mode. Although osteocytes hypothetically evolved both as strain sensors and fatigue damage sensors able to direct the removal of damage as needed, the mechanisms that govern the distribution of these cells remain unclear. The results of this study provide little or no evidence that the number of osteocyte lacunae has a functional role in mechanotransduction pathways that are typically considered in bone adaptation.  相似文献   

5.
The shape and structure of bones is a topic that has been studied for a long time by morphologists and biologists with the goal of explaining the laws governing their development, aging and pathology. The osteonal architecture of tibial and femoral mid‐diaphyses was examined morphometrically with scanning electron microscopy in four healthy young male subjects. In transverse sections of the mid‐diaphysis, the total area of the anterior, posterior, lateral and medial cortex sectors was measured and analysed for osteonal parameters including osteon number and density, osteon total and bone area and vascular space area. Osteons were grouped into four classes including cutting heads (A), transversely cut osteons (B), longitudinally cut osteons (C) and sealed osteons (D). The morphometric parameters were compared between the inner (endosteal) and outer (periosteal) half of the cortex. Of 5927 examined osteons, 24.4% cutting heads, 71.1% transversely cut osteons, 2.3% longitudinally cut osteons and 2.2% sealed osteons were found. The interosteonic bone (measured as the area in a lamellar system that has lost contact with its own central canal) corresponded to 51.2% of the endosteal and 52.4% of the periosteal half‐cortex. The mean number of class A cutting heads and class B osteons was significantly higher in the periosteal than in the endosteal half‐cortex (< 0.001 and P < 0.05, respectively), whereas there was no significant difference in density. The mean osteon total area, osteon bone area and vascular space area of both classes A and B were significantly higher (P < 0.001 for all three parameters) in the endosteal than in the periosteal half‐cortex. The significant differences between the two layers of the cortex suggest that the osteoclast activity is distributed throughout the whole cortical thickness, with more numerous excavations in the external layer, but larger resorption lacunae closer to the marrow canal. A randomly selected population of 109 intact class B osteons was examined at higher magnification (350×) to count osteocyte lacuna and to analyse their relationship with osteon size parameters. The distribution frequency of the mean number of osteocyte lacunae increased with the increment in the sub‐classes of osteon bone area, whereas the density did not show significant differences. The number of osteocyte lacunae had a direct correlation with the osteon bone area and the mean osteon wall thickness, as well as the mean number of lamellae. The osteocyte lacunae density showed an inverse relationship. These data suggest a biological regulation of osteoblast activity with a limit to the volume of matrix produced by each cell and proportionality with the number of available cells in the space of the cutting cone (total osteon area). The collected data can be useful as a set of control parameters in healthy human bone for studies on bone aging and metabolic bone diseases.  相似文献   

6.
Natural loading of the calcanei of deer, elk, sheep and horses produces marked regional differences in prevalent/predominant strain modes: compression in the dorsal cortex, shear in medial-lateral cortices, and tension/shear in the plantar cortex. This consistent non-uniform strain distribution is useful for investigating mechanisms that mediate the development of the remarkable regional material variations of these bones (e.g. collagen orientation, mineralization, remodeling rates and secondary osteon morphotypes, size and population density). Regional differences in strain-mode-specific microdamage prevalence and/or morphology might evoke and sustain the remodeling that produces this material heterogeneity in accordance with local strain characteristics. Adult calcanei from 11 animals of each species (deer, elk, sheep and horses) were transversely sectioned and examined using light and confocal microscopy. With light microscopy, 20 linear microcracks were identified (deer: 10; elk: six; horse: four; sheep: none), and with confocal microscopy substantially more microdamage with typically non-linear morphology was identified (deer: 45; elk: 24; horse: 15; sheep: none). No clear regional patterns of strain-mode-specific microdamage were found in the three species with microdamage. In these species, the highest overall concentrations occurred in the plantar cortex. This might reflect increased susceptibility of microdamage in habitual tension/shear. Absence of detectable microdamage in sheep calcanei may represent the (presumably) relatively greater physical activity of deer, elk and horses. Absence of differences in microdamage prevalence/morphology between dorsal, medial and lateral cortices of these bones, and the general absence of spatial patterns of strain-mode-specific microdamage, might reflect the prior emergence of non-uniform osteon-mediated adaptations that reduce deleterious concentrations of microdamage by the adult stage of bone development.  相似文献   

7.
The kinetics of osteogenic cells within secondary osteons have been examined within a 2-D model. The linear osteoblast density of the osteons and the osteocyte lacunae density were compared with other endosteal lamellar systems of different geometries. The cell density was significantly greater in the endosteal appositional zone and was always flatter than the central osteonal canals. Fully structured osteons compared with early structuring (cutting cones) did not show any significant differences in density. The osteoblast density may remain constant because some of them leave the row and become embedded within matrix. The overall shape of the Haversian system represented a geometrical restraint and it was thought to be related to osteoblast-osteocyte transformation. To test this hypothesis of an early differentiation and recruitment of the osteoblast pool which completes the lamellar structure of the osteon, the number and density of osteoblasts and osteocyte lacunae were evaluated. In the central canal area, the mean osteoblast linear density and the osteocyte lacunae planar density were not significantly different among sub-classes (with the exclusion of the osteocyte lacunae of the 300-1000 μm(2) sub-class). The mean number of osteoblasts compared with osteocyte lacunae resulted in significantly higher numbers in the two sub-classes, no significant difference was seen in the two middle sub-classes with the larger canals, and there were significantly lower levels in the smallest central canal sub-class. The TUNEL technique was used to identify the morphological features of apoptosis within osteoblasts. It was found that apoptosis occurred during the late phase of osteon formation but not in osteocytes. This suggests a regulatory role of apoptosis in balancing the osteoblast-osteocyte equilibrium within secondary osteon development. The position of the osteocytic lacunae did not correlate with the lamellar pattern and the lacunae density in osteonal radial sectors was not significantly different. These findings support the hypothesis of an early differentiation of the osteoblast pool and the independence of the fibrillar lamellation from osteoblast-osteocyte transformation.  相似文献   

8.
Histomorphometric analysis of human cortical bone has documented the occurrence of secondary osteon variants. These include drifting osteons which form tails as they move erratically through the cortex and Type II osteons which show partial resorption and redeposition within the cement line of the osteon. Little is known about the biological significance of these variants. Prior studies suggested correlations with age, biomechanics, diet, and mineral homeostasis. No study has yet tested for osteon variant associations with static measures of bone remodeling. In this study, thin sections (n = 112) of the posterior femur representing a late English Medieval adult human osteological collection, subdivided by age, sex, and socio-economic status, were examined to determine whether remodeling indicators reconstructed from osteon parameters (area, diameter, area ratios) and densities differed between categories of presence or absence of Type II and drifting osteon variants. Of the 112 sections, 33 presented with Type II osteons, and 38 had drifting osteons. Sporadic statistically significant results were identified. Haversian canal:osteon area ratio differed (p = 0.017) with Type II osteon presence, Type II osteons were more prevalent in males than females (p = 0.048), and drifting osteons were associated with smaller osteon (p = 0.049) and Haversian canal area (p = 0.05). These results may be explained through some biological (sex) and social (status) processes such as a period of physiological recovery (e.g., following lactation, malnutrition). However, the general lack of consistent relationships between osteon variants and remodeling indicators suggests they occur as a result of natural variation.  相似文献   

9.
The primary microstructural unit of cortical bone, the secondary osteon or Haversian system, is widely assumed to have a cylindrical shape. It is generally accepted that osteons are roughly circular in cross-section and deviations from circularity have been attributed to deviations from longitudinal orientation. To our knowledge this idealized geometric relationship, which assumes osteons are perfect cylinders, has not been rigorously explored. As such, we sought to explore two research questions: (i) Does the orientation of osteons in 3D explain variation in shapes visualized in 2D? (ii) Can differences in osteon 3D orientation explain previously reported age-related differences observed in their 2D cross-sectional shape (e.g. more circular shape and decreased area with age)? To address these questions we utilized a combination of 2D histology to identify osteon shape and superimposed micro-computed tomography data to assess osteon orientation in 3D based upon the osteonal canal. Shape was assessed by the inverse of Aspect Ratio (On.AspR−1, based on a fitted ellipse) – which ranged from 0 (infinitely elongated shape) to 1 (perfectly circular). A sample (n = 27) of human female anterior femoral cortical bone samples from across the human lifespan (20–87 years) were included in the analysis, which involved 1418 osteons. The overall mean measure of On.AspR−1 was 0.703 (1.42 Aspect Ratio). Mean osteon orientation was 79.1° (90° being longitudinal). While we anticipated a positive relation between orientation and On.AspR−1, we found the opposite – a weak negative correlation (with more oblique 3D osteon alignment, the 2D shape became more circular as reflected by increased On.AspR−1). When analysis of covariance was performed with age and orientation as covariates, the negative relation with orientation was replaced by a significant relation with age alone. This relation with age accounted for 41% of the variation of On.AspR−1. The results revealed that osteons, on average, are not circular in cross-section and that 3D orientation cannot account for deviation from circular shape. Osteons thus are strictly speaking not cylinders, as they tend to have elliptical cross-sections. We observed that osteons did become less elliptical in cross-section with age independent of orientation – suggesting this is a real change in morphology.  相似文献   

10.
11.
The mechanical properties of bone are known to depend on its structure at all length scales. In large animals, such as sheep, cortical bone grows very quickly and it is known that this occurs in 2 stages whereby a poorly ordered (mostly woven) bone structure is initially deposited and later augmented and partially replaced by parallel fibered and lamellar bone with much improved mechanical properties, often called primary osteons. Most interestingly, a similar sequence of events has also recently been observed during callus formation in a sheep osteotomy model. This has prompted the idea that fast intramembranous bone formation requires an intermediate step where bone with a lower degree of collagen orientation is deposited first as a substrate for osteoblasts to coordinate the synthesis of lamellar tissue. Since some osteoblasts become embedded in the mineralizing collagen matrix which they synthesize, the resulting osteocyte network is a direct image of the location of osteoblasts during bone formation. Using 3-dimensional imaging of osteocyte networks as well as tissue characterization by polarized light microscopy and backscattered electron imaging, we revisit the structure of growing plexiform (fibrolamellar) bone and callus in sheep. We show that bone deposited initially is based on osteocytes without spatial correlation and encased in poorly ordered matrix. Bone deposited on top of this has lamellar collagen orientation as well as a layered arrangement of osteocytes, both parallel to the surfaces of the initial tissue. This supports the hypothesis that the initial bone constitutes an endogenous scaffold for the subsequent deposition of parallel fibered and lamellar bone.  相似文献   

12.
There is considerable variation in the gross morphology and tissue properties among the bones of human infants, children, adolescents, and adults. Using 18 known-age individuals (nfemale = 8, nmale = 9, nunknown = 1; birth to 21 years old), from a well-documented cemetery collection, Spitalfields Christ Church, London, UK, this study explores growth-related changes in cortical and trabecular bone microstructure. Micro-CT scans of mid-shaft middle thoracic ribs are used for quantitative analysis. Results are then compared to previously quantified conventional histomorphometry of the same sample. Total area (Tt.Ar), cortical area (Ct.Ar), cortical thickness (Ct.Th), and the major (Maj.Dm) and minor (Min.Dm) diameters of the rib demonstrate positive correlations with age. Pore density (Po.Dn) increases, but age-related changes to cortical porosity (Ct.Po) appear to be non-linear. Trabecular thickness (Tb.th) and trabecular separation (Tb.Sp) increase with age, whereas trabecular bone pattern factor (Tb.Pf), structural model index (SMI), and connectivity density (Conn.D) decrease with age. Sex-based differences were not identified for any of the variables included in this study. Some samples display clear evidence of diagenetic alteration without corresponding changes in radiopacity, which compromises the reliability of bone mineral density (BMD) data in the study of past populations. Cortical porosity data are not correlated with two-dimensional measures of osteon population density (OPD). This suggests that unfilled resorption spaces contribute more significantly to cortical porosity than do the Haversian canals of secondary osteons. Continued research using complementary imaging techniques and a wide array of histological variables will increase our understanding of age- and sex-specific ontogenetic patterns within and among human populations.  相似文献   

13.
Sealed osteons are unusual variants of secondary osteons that have received little attention, especially in non‐human bones. Sealed osteons are characterized by central canals that are plugged with bone tissue. As with other variants of secondary osteons (e.g. drifting, dumbbell, multi‐canal), understanding how and why sealed osteons form can shed light on the mechanisms that regulate normal bone remodeling and how this process can be perturbed with aging and some diseases. In a recent microscopic evaluation of human tibiae obtained after traumatic amputations, 4–5% of the osteons were sealed. It is suggested that this high prevalence reflects occasional localized microscopic ischemia from normal osteonal remodeling; hence sealed osteons are implicated in human skeletal fragility. Therefore, osteon prevalence would be expected to correlate with the bone remodeling seen with aging; for example, showing positive relationships between sealed osteons and the population density of typical secondary osteons (OPD). We evaluated the prevalence of partially sealed (80–99% sealed) and fully sealed osteons with respect to age and variations in OPD in 10 adult human femora (34–71 years) and in various non‐human appendicular bones of mature animals that were not of advanced age, including deer calcanei, equine radii and equine third metacarpals. An additional sample of 10 bilateral human femora with unilateral non‐cemented total hip replacements (F,+HR) and non‐implanted contralateral femora (F,?HR) were evaluated (10 patients; 52–94 years). In non‐human bones, sealed + partially sealed osteons were rare (~0.1%) even when having relatively high OPD. When considering sealed + partially sealed osteons in femora from patients without any HR, results showed that 1.6% of the osteons were sealed or partially sealed, which was much lower than anticipated, but this is 10‐ to 20‐fold more than in any of the non‐human bones. Additionally, in all bones, sealed + partially sealed osteons were significantly smaller than typical secondary osteons (mean diameters: 125 vs. 272 μm; P  < 0.005). In the patients with HR, the percentage of sealed + partially sealed osteons: (i) did not correlate with age, (ii) showed no significant difference between F,?HR and F,+HR (1.9 vs. 2.1%; P  = 0.2), and (iii) was positively correlated with OPD (r  = 0.67, P  = 0.001), which differs from the very weak or lack of correlations in the non‐human bones and the other human femur sample. The lack of an age‐related relationship, in addition to the very low prevalence of sealed + partially sealed osteons are inconsistent with the idea that they contribute to reduced bone quality seen in aging humans. The small size of sealed and partially sealed osteons, regardless of species affiliation, suggests that they represent closing cones at the termini of some osteons. Available evidence suggests that osteons of primates might have a greater capacity for branching that is associated with closing cones, which might explain the 10–20 times higher prevalence of sealed + partially sealed osteons in the human bones examined in this study.  相似文献   

14.
Bone is a multiscale composite material made of both a type I collagen matrix and a poorly crystalline apatite mineral phase. Due to remodeling activity, cortical bone is made of Bone Structural Units (BSUs) called osteons. Since osteon represents a fundamental level of structural hierarchy, it is important to investigate the relationship between mechanical behavior and tissue composition at this scale for a better understanding of the mechanisms of bone fragility. The aim of this study is to analyze the links between ultrastructural properties and the mechanical behavior of bone tissue at the scale of osteon.Iliac bone biopsies were taken from untreated postmenopausal osteoporotic women, embedded, sectioned and microradiographed to assess the degree of mineralization of bone (DMB). On each section, BSUs of known DMB were indented with relatively high load (∼500 mN) to determine local elastic modulus (E), contact hardness (Hc) and true hardness (H) of several bone lamellae. Crystallinity and collagen maturity were measured by Fourier Transform InfraRed Microspectroscopy (FTIRM) on the same BSUs. Inter-relationships between mechanical properties and ultrastructural components were analyzed using multiple regression analysis.This study showed that elastic deformation was only explained by DMB whereas plastic deformation was more correlated with collagen maturity. Contact hardness, reflecting both elastic and plastic behaviors, was correlated with both DMB and collagen maturity. No relationship was found between crystallinity and mechanical properties at the osteon level.  相似文献   

15.
Bone remodeling is highly inhibited around the inner ear space, most likely by the anti‐resorptive action of the inner ear cytokine osteoprotegerin (OPG) entering perilabyrinthine bone through the lacuno‐canalicular porosity (LCP). This extracellular signaling pathway depends on the viability of individual osteocytes. The objective of this study was to evaluate the patency of the LCP at different ages. Sixty‐five bulk‐stained undecalcified human temporal bones and 19 ribs were selected to span the ages from the 30th gestational week to 95 years. Osteocytes from inside a 2‐mm wide perilabyrinthine zone of bone were identified by 3D vector calculations and the numerical densities estimated with an optical dissector and compared to age‐matched ribs. From a high fetal count of 90,000 cells/mm3, the density of viable capsular osteocytes declined rapidly to 73,000 cells/mm3 at three years of age, and non‐viable osteocytes increased inversely. After 3 years, this decline/increase continued at a much slower rate. The densities of viable as well as non‐viable osteocytes and the rates of change were much higher in perilabyrinthine bone compared to ribs. Only after the age of 80 years had the density of viable capsular osteocytes declined to the level of ribs. The bi‐phasic osteocyte kinetics reflects different development stages. The high initial density of viable osteocytes may secure a life‐long anatomical route for inner‐ear OPG despite the unique accumulation of non‐viable osteocytes. Clustering of non‐viable osteocytes may cause local aberrations in the signaling system by closure of the LCP. Anat Rec, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
By applying a phase-retrieval step before carrying out standard filtered back-projection reconstructions in tomographic imaging, we were able to resolve structures with small differences in density within a densely absorbing sample. This phase-retrieval tomography is particularly suited for the three-dimensional segmentation of secondary osteons (roughly cylindrical structures) which are superimposed upon an existing cortical bone structure through the process of turnover known as remodelling. The resulting images make possible the analysis of the secondary osteon structure and the relationship between an osteon and the surrounding tissue. Our observations have revealed many different and complex 3D structures of osteons that could not be studied using previous methods. This work was carried out using a laboratory-based x-ray source, which makes obtaining these sorts of images readily accessible.  相似文献   

17.
Modeling Tracer Transport in an Osteon under Cyclic Loading   总被引:5,自引:0,他引:5  
A mathematical model is developed to explain the fundamental conundrum as to how during cyclic mechanical loading there can be net solute (e.g., nutrient, tracer) transport in bone via the lacunar-canalicular porosity when there is no net fluid movement in the canaliculi over a loading cycle. Our hypothesis is that the fluid space in an osteocytic lacuna facilitates a nearly instantaneous mixing process of bone fluid that creates a difference in tracer concentration between the inward and outward canalicular flow and thus ensures net tracer transport to the osteocytes during cyclic loading, as has been shown experimentally. The sequential spread of the tracer from the osteonal canal to the lacunae is investigated for an osteon experiencing sinusoidal loading. The fluid pressure in the canaliculi is calculated using poroelasticity theory and the mixing process in the lacunae is then simulated computationally. The tracer concentration in lacunae extending radially from the osteonal canal to the cement line is calculated as a function of the loading frequency, loading magnitude, and number of loading cycles as well as the permeability of the lacunar-canalicular porosity. Our results show that net tracer transport to the lacunae does occur for cyclic loading. Tracer transport is found to increase with higher loading magnitude and higher permeability and to decrease with increasing loading frequency. This work will be helpful in designing experimental studies of tracer movement and bone fluid flow, which will enhance our understanding of bone metabolism as well as bone adaptation. © 2000 Biomedical Engineering Society. PAC00: 8716Uv, 8719Rr, 8716Ac  相似文献   

18.
This study examines relationships between bone morphology and mechanically mediated strain/fluid-flow patterns in an avian species. Using mid-diaphyseal transverse sections of domestic turkey ulnae (from 11 subadults and 11 adults), we quantified developmental changes in predominant collagen fiber orientation (CFO), mineral content (%ash), and microstructure in cortical octants or quadrants (i.e., %ash). Geometric parameters were examined using whole mid-diaphyseal cross-sections. The ulna undergoes habitual bending and torsion, and demonstrates nonuniform matrix fluid-flow patterns, and high circumferential strain gradients along the neutral axis (cranial-caudal) region at mid-diaphysis. The current results showed significant porosity differences: 1) greater osteocyte lacuna densities (N.Lac/Ar) (i.e., "non-vascular porosity") in the caudal and cranial cortices in both groups, 2) greater N.Lac/Ar in the pericortex vs. endocortex in mature bones, and 3) greater nonlacunar porosity (i.e., "vascular porosity") in the endocortex vs. pericortex in mature bones. Vascular and nonvascular porosities were not correlated. There were no secondary osteons in subadults. In adults, the highest secondary osteon population densities and lowest %ash occurred in the ventral-caudal, caudal, and cranial cortices, where shear strains, circumferential strain gradients, and fluid displacements are highest. Changes in thickness of the caudal cortex explained the largest proportion of the age-related increase in cranial-caudal breadth; the thickness of other cortices (dorsal, ventral, and cranial) exhibited smaller changes. Only subadult bones exhibited CFO patterns corresponding to habitual tension (ventral) and compression (dorsal). These CFO variations may be adaptations for differential mechanical requirements in "strain-mode-specific" loading. The more uniform oblique-to-transverse CFO patterns in adult bones may represent adaptations for shear strains produced by torsional loading, which is presumably more prevalent in adults. The micro- and ultrastructural heterogeneities may influence strain and fluid-flow dynamics, which are considered proximate signals in bone adaptation.  相似文献   

19.
The sexual dimorphism in age-related loss of human vertebral cancellous bone is not fully understood and could be related to dimorphism in the bone cell populations. The objective of this study was to investigate age- and gender-related differences in the osteocyte population and its relationship with bone volume fraction for human vertebral cancellous bone. Histomorphometric techniques were used to quantify osteocyte lacunae (a measure of osteocyte population) and bone volume fraction in male and female human T12 vertebrae, the most common site of vertebral fracture. Two measures of osteocyte population [number of osteocytes per bone area (OtLcDn) and number of osteocytes per total area (OtLcN/TA)] and their relationships with age and bone volume fraction were found to be sexually dimorphic. Dimorphism in osteocyte density may explain the dimorphic patterns of bone loss in human vertebrae due to the sensory and signal communication functions that osteocytes perform.  相似文献   

20.
Tensile breaking load, strength, strain, modulus of elasticity and density plus the histological structure at the fracture site, were determined for 207 standardized specimens of cortical bone from the embalmed femur, tibia, and fibula of 17 men from 36 to 75 years of age. The men were divided into a younger group (41.5 years old-avg) and an older group (71 years old-avg). Specimens from younger men had a greater average breaking load, strength, strain, modulus and density than those from older men. The percentage of spaces in the break area was greater in specimens from older men, but specimens from younger men had a slightly greater percentage of osteons, osteon fragments, and interstitial lamellae. The number of osteons/mm2 and of osteon fragments/mm2 was greater in specimens from older men but the average area/osteon and area/osteon fragment was greater in specimens from younger men. Thus, there are quantitative and qualitative differences in the histological structure of bone from younger and older men. Differences in the tensile properties of bone from younger and older men can be explained by histological differences in the bone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号