首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An acetyltransferase-overexpressing strain of Salmonella typhimurium (NM2009) has been used to investigate roles of human liver microsomal cytochrome P450 (P450) enzymes in the activation of carcinogenic nitrosamine derivatives, including N-nitrosodialkylamines and tobacco-smoke-related nitrosamines, to genotoxic products. Studies employing correlation of activities with several P450-dependent monooxygenase reactions in different human liver samples, inhibition of microsomal activities by antibodies raised against human P450 enzymes and by specific P450 inhibitors, and reconstitution of activities with purified P450 enzymes suggest that the tobacco-smoke-related nitrosamines 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) and N-nitrosonornicotine (NNN) as well as N-nitrosodimethylamine (NDMA) and N-nitrosodiethylamine (NDEA) are oxidized to genotoxic products by different P450 enzymes, particularly P450 2E1 and 2A6. The activation of NDMA and NNN by liver microsomes was suggested to be catalyzed more actively by P450 2E1 than by other P450 enzymes because the activities were well correlated with NDMA N-demethylation and aniline p-hydroxylation in different human samples, and purified P450 2E1 had the highest activities in reconstituted monooxygenase systems. The relatively high contribution of P450 2A6 to the activation of NDEA and NNK was supported by the correlation seen with coumarin 7-hydroxylation in human liver microsomes, and antibodies raised against P450 2A6 inhibited both activities by approximately 50%. P450 3A4, 2D6 and 2C enzymes appear not to be extensively involved in the activation of these nitrosamines as judged by several criteria examined. Thus, this work indicates that several P450 enzymes, particularly P450 2E1 and 2A6, catalyze metabolic activation of nitrosamine derivatives including N-nitrosodialkylamines and tobacco-smoke-related nitrosamines in human liver microsomes.  相似文献   

2.
Rat nasal cavity is one of the target organs for carcinogenesis induced by N-nitrosodimethylamine (NDMA), N-nitrosodiethylamine (NDEA), and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). The present work investigated the metabolism of these nitrosamines by rat nasal microsomes, as well as the possible modulating factors. Microsomes prepared from rat nasal mucosa were efficient in metabolizing these nitrosamines. In general, the metabolism of the nitrosamines was slightly higher in 9-week-old rats than in 4-week-old animals, and there was no sex-related difference. Fasting of rats for 48 h, which is known to induce hepatic cytochrome P450IIE1 and NDMA metabolism, did not increase the nasal metabolism of NDMA, NDEA, or NNK. Pretreatment of rats with acetone, another inducer of hepatic P450IIE1, did not increase the metabolism of NDMA. Furthermore, it decreased the nasal metabolism of NDEA and NNK. Immunoinhibition studies suggest that, in the nasal mucosa, P450IIE1 is only partially responsible for the oxidation of NDMA and other P450 isozymes are responsible for the metabolism of NDEA. A single p.o. pretreatment of male rats with diallyl sulfide (DAS), a component of garlic oil, caused a significant decrease in the oxidative metabolism of NDEA and NNK in rat nasal mucosa. Whereas the nasal metabolism of NDMA was reduced by DAS pretreatment, there was no change in the amount of the nasal microsomal proteins immunoreactive with the antibodies against P450IIE1. The inhibitory effect of DAS on the nasal oxidative metabolism of NDMA, NDEA, and NNK was also observed in experiments in vitro. The results demonstrate the ability of nasal mucosa to metabolically activate these nitrosamines and the inhibition of this process by DAS, suggesting that DAS may be effective in inhibiting the related nasal tumorigenesis.  相似文献   

3.
N'-Nitrosonornicotine (NNN) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) are tobacco-specific nitrosamines. NNN and NNK can induce cancers of the esophagus and lung, respectively, in laboratory animals, but data on human esophageal cancer are lacking. The association between levels of NNN and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), an NNK metabolite, in urine samples collected before diagnosis and risk of esophageal cancer was examined in 77 patients with esophageal cancer and 223 individually matched controls, all current smokers, from a cohort of 18244 Chinese men in Shanghai, China, followed from 1986 to 2008. Urinary total NNN (free NNN plus NNN-N-glucuronide) was significantly higher, whereas the percentage of its detoxification product NNN-N-glucuronide was significantly lower in cases than controls. Odds ratios (95% confidence intervals) of esophageal cancer for the second and third tertiles of total NNN were 3.99 (1.25-12.7) and 17.0 (3.99-72.8), respectively, compared with the first tertile after adjustment for urinary total NNAL and total cotinine and smoking intensity and duration (P(trend) < 0.001). The corresponding figures for the percentage of NNN-N-glucuronides were 0.37 (0.17-0.80) and 0.27 (0.11-0.62) (P(trend) = 0.001). Urinary total NNN and the percentage of NNN-N-glucuronides almost completely accounted for the observed association for urinary total NNAL (free NNAL plus its glucuronides), urinary total cotinine and smoking intensity with esophageal cancer risk. These findings along with results of previous studies in laboratory animals support a significant and unique role of NNN in esophageal carcinogenesis in humans.  相似文献   

4.
Asymmetric dialkylnitrosamines induce esophageal cancer in rats and hence might be involved in the etiology of this cancer in humans. As a test of this hypothesis, we examined whether nitrosamines can be activated by segments of human esophagus and by microsomes of human and rat esophagus and liver. Specimens of 8 human esophagi were removed less than 6 h after death, and segments were incubated for 6 h with 23 and 300 microM N-nitrosomethyl-n-amylamine (NMAA). Hydroxy-NMAA yields were determined by gas chromatography-thermal energy analysis and were insignificant except for those of 5-hydroxy-NMAA, which were low. Microsomes were prepared from 4 batches of human esophagi and samples with 0.6 mg protein were incubated for 20 min with NMAA and cytochrome P-450 cofactors. We determined hydroxy-NMAAs as before and aldehydes by high-performance liquid chromatography of their 2,4-dinitrophenylhydrazones. Incubation of these microsomes with 12 mM NMAA yielded mean values of 0.64 nmol formaldehyde ("demethylation"), 0.21 nmol pentaldehyde ("depentylation"), and 0.56 nmol total hydroxy-NMAAs/min/mg protein. Metabolite yields under various conditions were determined, including a demonstration that carbon monoxide inhibited 81% of NMAA demethylation, indicating that cytochrome P-450 enzymes were involved. We also examined N-nitrosodimethylamine (NDMA) demethylation by the same microsomes. Rat esophageal microsomes dealkylated NMAA and NDMA similarly to human esophageal microsomes, but with 2-6 times and twice the activity, respectively. Human and rat esophageal microsomes demethylated 6 mM NMAA 18-20 times as rapidly as they demethylated 5 mM NDMA, in contrast to liver microsomes of these species, which demethylated 6 mM NMAA only 0.9-1.4 times as rapidly as they demethylated 5 mM NDMA. However, liver microsomes of both species were more active than esophageal microsomes for NMAA depentylation. The occurrence of NMAA demethylation and (to a lesser extent) depentylation with both human and rat esophageal microsomes is important because these are the activating reactions, and suggests that both human and rat esophagus contain P-450 isozymes that specifically dealkylate asymmetric dialkylnitrosamines.  相似文献   

5.
S E Murphy  R Heiblum 《Carcinogenesis》1990,11(9):1663-1666
The effect of N'-nitrosoanatabine (NAT) and nicotine on the metabolism of N'-nitrosonornicotine (NNN) and 4-(methyl-nitrosamino)-1-(3- pyridyl)-1-butanone (NNK) by cultured rat oral tissue was investigated. The effect of NNN on NNK metabolism and the effect of NNK on NNN metabolism was also determined. NNK inhibited NNN metabolism more than NNN inhibited NNK metabolism. NAT inhibited the metabolism of NNK but not of NNN. Nicotine, which is present at greater than 500 times the levels of NNN and NNK in smokeless tobacco, inhibited the metabolism of both nitrosamines. Inhibition of 1 microM NNN metabolism was greater than that of 1 microM NNK when the concentration of nicotine was 1, 10 or 100 microM. Nicotine at 100 microM inhibited the formation of all metabolites of NNN by 85-92%. These results suggest that NNN and nicotine may be metabolized by a common enzyme.  相似文献   

6.
A Salmonella typhimurium tester strain YG7108 2E1/OR co-expressing human CYP2E1 together with human NADPH-cytochrome P450 reductase (OR) was established. The mutagen-activating capacity of human CYP2E1 for N-alkylnitrosamines was compared with that of CYP2A6 using the YG7108 2E1/OR and the YG7108 2A6/OR strains of SALMONELLA: Salmonella YG7108 2A6/OR is a derivative of YG7108 co-expressing CYP2A6 together with OR. Eight N-alkylnitrosamines, including N-nitrosodimethylamine (NDMA), N-nitrosodiethylamine (NDEA), N-nitrosodipropylamine (NDPA), N-nitrosodibutylamine (NDBA), N-nitrosomethylphenylamine (NMPhA), N-nitrosopyrrolidine (NPYR), N-nitrosonornicotine (NNN) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) were examined. CYP2E1 expressed in the YG7108 2E1/OR cells showed mutagen-activating capacity, as indicated by induced revertants/min/pmol cytochrome P450, for NDMA, NDEA, NDPA, NDBA, NPYR and NNK, but not NMPhA and NNN. CYP2A6 activated NDMA, NDEA, NDPA, NDBA, NMPhA, NPYR, NNN and NNK. The ratio of the mutagen-activating capacity seen with CYP2A6 to that seen with CYP2E1 was calculated for each N-alkylnitrosamine. In the case of NDMA, NPYR and NDEA, the ratio was under 1.0, while the ratio was over 1.0 with NDPA, NDBA, NNK, NMPhA and NNN. We conclude that human CYP2E1 is mainly responsible for the metabolic activation of N-nitrosamines with a relatively short alkyl chain(s), whereas CYP2A6 was predominantly responsible for the metabolic activation of N-alkylnitrosamines possessing a relatively bulky alkyl chain(s).  相似文献   

7.
Tobacco-specific nitrosamines are a group of carcinogens that are present in tobacco and tobacco smoke. They are formed from nicotine and related tobacco alkaloids. Two of the nicotine-derived nitrosamines, NNK and NNN, are strong carcinogens in laboratory animals. They can induce tumors both locally and systemically. The induction of oral cavity tumors by a mixture of NNK and NNN, and the organospecificity of NNK for the lung are particularly noteworthy. The amounts of NNK and NNN in tobacco and tobacco smoke are high enough that their total estimated doses to long-term snuff-dippers or smokers are similar in magnitude to the total doses required to produce cancer in laboratory animals. These exposures thus represent an unacceptable risk to tobacco consumers, and possibly to non-smokers exposed for years to environmental tobacco smoke. The permission of such high levels of carcinogens in consumer products used by millions of people represents a major legislative failure. Indeed, the levels of tobacco-specific nitrosamines in tobacco are thousands of times higher than the amounts of other nitrosamines in consumer products that are regulated by government authorities. Although the role of tobacco-specific nitrosamines as causative factors in tobacco-related human cancers cannot be assessed with certainty because of the complexity of tobacco and tobacco smoke, several lines of evidence strongly indicate that they have a major role, especially in the causation of oral cancer in snuff-dippers. Epidemiologic studies have demonstrated that snuff-dipping causes oral cancer. NNK and NNN are quantitatively the most prevalent known carcinogens in snuff, and they induce oral tumors when applied to the rat oral cavity. A role for NNK in the induction of lung cancer by tobacco smoke is likely because of its organospecificity for the lung. Tobacco-specific nitrosamines may also be involved in the etiology of tobacco-related cancers of the esophagus, nasal cavity, and pancreas. Because they are derived from nicotine, and therefore should be associated only with tobacco, tobacco smoke and other nicotine-containing products, tobacco-specific nitrosamines as well as their metabolites and macromolecular adducts should be ideal markers for assessing human exposure to, and metabolic activation of, tobacco smoke carcinogens. Ongoing research has demonstrated the formation of globin and DNA adducts of NNK and NNN in experimental animals. Sensitive methods for the detection and quantitation of these adducts in humans would provide an approach to assessing individual risk for tobacco-related cancers.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
We have developed a human B-lymphoblastoid cell line, designated 2D6/Hol, which stably expresses human cytochrome P450 CYP2D6 cDNA. This cell line exhibits bufuralol 1'-hydroxylase activity and immunologically detectable CYP2D6 protein. The specific activity of (+)-bufuralol 1'-hydroxylase in microsomes from 2D6/Hol cells was comparable to that observed in human liver microsomes. This cell line was used to examine the mutagenicity activation of three tobacco smoke-derived nitrosamines, N-nitrosonornicotine (NNN), 1-(N-methyl-N-nitrosamino)-1-(3-pyridinyl)-4-butanal) (NNA) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), by CYP2D6. Exposure of 2D6/Hol cells to NNK concentrations of 30-90 micrograms/ml induced a concentration-dependent decrease in relative survival and increase in mutant fraction at the hypoxanthine guanine phosphoribosyl transferase (hprt) locus. In contrast, NNK was non-mutagenic and non-cytotoxic to control cells at exposure concentrations up to 150 micrograms/ml. NNK mutagenicity in 2D6/Hol cells was compared to the responses observed in isogenic cell lines expressing human CYP1A2 (1A2/Hol), human CYP2A3 (2A3/Hol) and human CYP2E1 (2E1/Hol). These three additional human cytochrome P450-expressing cell lines were also found to be sensitive to NNK-induced mutagenicity and cytotoxicity. We found no evidence for CYP2D6-mediated activation of NNN or NNA. NNN was non-cytotoxic and non-mutagenic to both control and 2D6/Hol cells. NNA was equally cytotoxic and mutagenic to control cells and 2D6/Hol cells. The activation of NNA to a mutagen may have been carried out by P450 native to the AHH-1 TK +/- cell line. The 2D6/Hol cell line, in conjunction with the control cell line and other isogenic cell lines expressing other human cytochrome P450 cDNAs provides a useful system for the examination of the role of the polymorphic CYP2D6 in human procarcinogen activation and drug metabolism.  相似文献   

9.
The effects of phenobarbital (PB), 3-methylcholanthrene (MC), pyrazole (PY) and ethanol (EtOH) pretreatment on N-nitrosodimethylamine (NDMA), N-nitrosobutylmethylamine (NBMA) and N-nitrosomethylbenzylamine (NMBzA) metabolism were examined in rats. In isolated hepatocytes, PB increased the metabolic decomposition of NBMA and NMBzA, and MC increased that of NBMA; PY and EtOH increased only that of NDMA. In studies of hepatic microsomal dealkylation, PB increased NBMA debutylation and NMBzA debenzylation, and MC increased NBMA debutylation; PY and EtOH increased NDMA demethylation selectively. Several cytochrome P450 (P450) species were active in dealkylating nitrosamines, indicating that the organ-specific carcinogenicity of nitrosamines might be changed by various P450 inducers.  相似文献   

10.
Metabolism of N-nitrosodialkylamines by human liver microsomes   总被引:3,自引:0,他引:3  
The metabolism of N-nitrosodimethylamine (NDMA), N-nitrosodiethylamine, N-nitrosobenzylmethylamine, and N-nitrosobutylmethylamine was investigated in incubations with human liver microsomes. All of the 16 microsomal samples studied were able to oxidize NDMA to both formaldehyde and nitrite at NDMA concentrations as low as 0.2 mM; the rates of product formation of the samples ranged from 0.18 to 2.99 nmol formaldehyde/min/mg microsomal protein (median, 0.53 nmol). At a concentration of 0.2 mM NDMA, the rates of denitrosation (nitrite formation) were 5 to 10% (median, 6.3%) those of demethylation (formaldehyde formation); the ratio of denitrosation to demethylation increased with increases in NDMA concentration, in a similar manner to rat liver microsomes. Immunoblot analysis with antibodies prepared against rat P-450ac (an acetone-inducible form of cytochrome P-450) indicated that the P-450ac [P-450j (isoniazid-inducible form)] orthologue in human liver microsomes had a slightly higher molecular weight than rat P-450ac and the amounts of P-450ac orthologue in human liver microsomes were highly correlated with NDMA demethylase activities (r = 0.971; P less than 0.001). Analysis of four selected microsomal samples showed that human liver microsomes exhibited at least three apparent Km and corresponding Vmax values for NDMA demethylase. This result, suggesting the metabolism of NDMA by different P-450 enzymes, is similar to that obtained with rat liver microsomes, even though most of the human samples had lower activities than did the rat liver microsomes. The high affinity Km values of the four human samples ranged from 27 to 48 microM (median, 35 microM), which were similar to or slightly lower than those observed in rat liver microsomes, indicating that human liver microsomes are as efficient as rat liver microsomes in the metabolism of NDMA. The human liver microsomes also catalyzed the dealkylation and denitrosation of other nitrosamines examined. The rates of product formation and the ratios of denitrosation to dealkylation varied with the structures and concentrations of the substrates as well as with the microsomal samples tested. The results indicate that human liver microsomes are capable of metabolizing N-nitrosodialkylamines via the pathways that have been established with rat liver microsomes.  相似文献   

11.
The formation of tobacco-specific nitrosamines from the major tobacco alkaloid nicotine was examined. Detached leaf tobacco was fed either [2'-14C]nicotine or [2'-14C]nornicotine and air cured. The cured leaf was then analyzed for [2'-14C]N'-nitrosonornicotine ([2'-14C]NNN). The yield of [2'-14C]NNN was 0.007% from nornicotine and 0.009% from nicotine. Because the ratio of nicotine to nornicotine in conventional nicotine-type tobacco is 20-100:1, nicotine is considered to be the major precursor for the carcinogen NNN in tobacco. The formation of other nitrosamines from nicotine in vitro was then studied. Reaction of nicotine with NaNO2 gave rise to NNN, as well as to two other nitrosamines, 4-(N-methyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and 4-(N-methyl-N-nitrosamino)-4-(3-pyridyl)butanal (NNA). Analysis of market products revealed the presence of NNK (0.6-24 microgram/g) in chewing tobacco and snuff. The tumorigenic activity of NNN, NNK, and NNA in strain A mice was studied. NNK induced more lung adenomas per mouse than did NNN, whereas NNA was less active than NNN. In addition, two cases of undifferentiated carcinoma of the salivary glands occurred in the NNN experimental groups.  相似文献   

12.
The tobacco‐specific nitrosamines N′‐nitrosonornicotine (NNN) and 4‐(methylnitrosamino)‐1‐(3‐pyridyl)‐1‐butanone (NNK) are potent carcinogens for the rat esophagus and lung, respectively. Consistent with the animal carcinogenicity data, we previously reported a remarkably strong association between prospectively measured urinary total NNN, a biomarker of human NNN intake, and the risk of developing esophageal cancer among smokers in the Shanghai Cohort Study. We also demonstrated that urinary total 4‐(methylnitrosamino)‐1‐(3‐pyridyl)‐1‐butanol (NNAL), a biomarker of exposure to the lung carcinogen NNK, is strongly associated with the risk of lung, but not esophageal cancer in smokers. In this study, we investigated the potential relationship between NNN intake and lung cancer risk in the same cohort. The prospectively collected urine samples from lung cancer cases and matching controls selected for this study, all current smokers, have been previously analyzed for total NNAL, cotinine (a biomarker of nicotine intake) and phenanthrene tetraol (PheT) (a biomarker of exposure to polycyclic aromatic hydrocarbons). Urinary levels of total NNN were not associated with the risk of lung cancer: odds ratios (95% confidence intervals) associated with the second and third tertiles of total NNN, relative to the lowest tertile, were 0.82 (0.36–1.88) and 1.02 (0.39–2.89), respectively (p for trend = 0.959), after adjustment for self‐reported smoking history, urinary cotinine and PheT. The results of this study reaffirm the previously reported specificity of urinary total NNN and total NNAL as predictors of esophageal and lung cancer risks, respectively, in smokers, and demonstrate remarkable coherence between rat target tissues of these carcinogens and susceptibility to cancer in smokers.  相似文献   

13.
Smokeless tobacco products are a known cause of oral cancer in India. Carcinogenic tobacco-specific nitrosamines in these products are believed to be at least partially responsible for cancer induction, but there have been no recent analyses of their amounts. We quantified levels of 4 tobacco-specific nitrosamines, N'-nitrosonornicotine (NNN), N'-nitrosoanatabine (NAT), N'-nitrosoanabasine (NAB) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), in 32 products marketed currently in India. Levels of nitrate, nitrite and nicotine were also determined. The highest levels of tobacco-specific nitrosamines were found in certain brands of khaini, zarda and other smokeless tobacco products. Concentrations of NNN and NNK in these products ranged from 1.74-76.9 and 0.08-28.4 microg/g, respectively. Levels of tobacco-specific nitrosamines in gutka were generally somewhat lower than in these products, but still considerably higher than nitrosamine levels in food. Tobacco-specific nitrosamines were rarely detected in supari, which does not contain tobacco, or in tooth powders. The results of our study demonstrate that exposure to substantial amounts of carcinogenic tobacco-specific nitrosamines through use of smokeless tobacco products remains a major problem in India.  相似文献   

14.
The metabolism of several N-nitrosodialkylamines was studied using rat liver microsomes and purified cytochrome P450 isozymes in a reconstituted monooxygenase system. With purified acetone/ethanol-inducible cytochrome P450 (P450ac), high N-nitrosodimethylamine (NDMA) demethylase activity was observed. Cytochrome b5 was also involved in NDMA metabolism by decreasing the Km of NDMA demethylase. A close relationship between the demethylation and denitrosation of this substrate was observed. P450ac was also active in the metabolism of N-nitrosoethylmethylamine (NEMA), but was less active than phenobarbital-inducible cytochrome P450 (P450b) in the metabolism of N-nitrosobutylmethylamine (NBMA), especially in catalysing the debutylation reaction. Similar substrate specificity was demonstrated with liver microsomes from rats treated with other inducers. With different P450 isozymes and microsomes, a close relationship between metabolism and activation of nitrosamines to mutagens to V79 cells was demonstrated. DNA alkylation by NDMA in vitro was correlated with the rate of metabolism of these compounds, whereas DNA alkylation in vivo was more complex and was dose-dependent. The work demonstrates the importance of knowledge of the substrate specificity of cytochrome P450 isozymes in understanding the mechanisms of the metabolic activation of nitrosamines.  相似文献   

15.
We undertook this study to answer several questions regarding nitrosamine metabolism. Kinetics of nitrosamine metabolism showed the involvement of at least two enzymes in the dealkylation of N-nitrosodiethylamine (NDEA) and N-nitrosodimethylamine (NDMA) in mouse liver microsomes. Coumarin inhibited both reactions competitively. On the other hand, microsomal coumarin 7-hydroxylase was inhibited by NDMA (Ki 2.7 mM) and NDEA (Ki 0.013 mM). The big difference in the Ki values suggests a higher affinity of NDEA than NDMA to Cyp2a-5 (mouse cytochrome P450coh). A specific antibody against Cyp2a-5 inhibited more of the microsomal NDEA (up to 90%) than NDMA (up to 40%) dealkylation. The converse was true with anti-Cyp2e-1 antibody. These results suggest that the primary substrate for Cyp2a-5 is NDEA and for Cyp2e-1, NDMA. Western blot analysis of human liver microsomes showed a great interindividual variation in the amounts of CYP2A6 (human cytochrome P450coh) and CYP2E1. Also, courmarin 7-hydroxylation and nitrosamine dealkylation varied greatly among individuals. A high correlation (r = 0.93, P < 0.001) was found between NDEA and coumarin metabolism. Both activities were associated with CYP2A6. On the other hand, little or no correlation was found between microsomal CYP2A6 and CYP2E1 or between CYP2E1 and NDEA dealkylation. Immunoinhibition of human microsomal NDEA metabolism by CYP2a-5 antibody varied greatly among individuals (10–90%), suggesting, as in the case of mice, that NDEA is metabolized primarily by CYP2A6, at least in some individuals. Taken together the data suggest that (1) the metabolic activation of nitrosamines in humans varies greatly among individuals; (2) different nitrosamines may partially be metabolized by different cytochrome P450 isozymes; and (3) because of similarities between nitrosamine metabolism in mice and humans, inbred strains of mice would be relevant experimental models for studying nitrosamine activation.  相似文献   

16.
The metabolism and DNA binding of N'-nitrosonornicotine (NNN) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) by cultured F344 rat oral tissue and esophagus were investigated over a range of concentrations. The metabolites present in the culture media were separated by high performance liquid chromatography and were identified by comparison to standards. alpha-Hydroxylation of NNN, an esophageal carcinogen, was the major pathway for metabolism of this nitrosamine in both tissues. The metabolites formed from 2'-hydroxylation were between 3.0 and 3.9 times those formed from 5'-hydroxylation. 2'-Hydroxylation results in a pyridyloxobutylating species. DNA from esophagus cultured with [5-3H]NNN contained a pyridyloxobutylated adduct which upon acid hydrolysis released 3.8 pmol [5-3H]-4-hydroxy-1-(3-pyridyl)-1-butanone/mumol guanine. DNA from oral tissue cultured under the same conditions, where the extent of metabolism was the same, contained no measurable [5-3H]NNN DNA adduct. This suggests that factors, as yet unknown, cause the DNA of oral cavity tissue to be protected from pyridyloxobutylation by NNN. The metabolism of NNK by alpha-hydroxylation was as much as 10-fold less than the metabolism of NNN by this pathway in both tissues. alpha-Hydroxylation of NNK results in either a methylating species or a pyridyloxobutylating species. DNA from oral tissue cultured with [C3H3]NNK contained between 1.7 and 4.3 pmol 7-methylguanine/mumol guanine, respectively. No pyridyloxobutylated DNA (less than 0.2 pmol/mumol guanine) was detected in oral tissue incubated with [5-3H]NNK. The DNA from esophagi incubated with [C3H3]NNK contained no 7-methylguanine (less than 0.4 pmol/mumol guanine). The level of pyridyloxobutylation of DNA from esophagi incubated with [5-3H]NNK was 0.17 pmol/mumol guanine. The ability of the esophagus to metabolize NNN to a greater extent than NNK to a reactive species which pyridyloxobutylates DNA may be important in determining the carcinogenicity of NNN in the esophagus. In contrast, the metabolism of NNK to a methylating species by oral cavity tissue suggests that this tobacco-specific nitrosamine is important in tobacco-related oral cavity carcinogenesis.  相似文献   

17.
The origin of tobacco-specific nitrosamines (TSNA) in mainstream smoke and the possible contribution of synthesis during the smoking procedure was investigated. Addition of the nitrosamine precursors nitrate and nicotine to the tobacco prior to smoking did not change the mainstream smoke concentrations of N'-nitrosonornicotine (NNN) and 4-(methyl-nitrosamino)-1-(3-pyridyl)-1-butanone (NNK), whereas the mainstream smoke concentration of N'-nitrosoanabasine (NAB) and N'-nitrosoanatabine (NAT) increased after spiking the cigarettes with nitrate. Data for TSNA in tobacco and in mainstream smoke and for nitrate in tobacco of commercial cigarettes of the West German market, taken from previous investigations, were used to calculate the mainstream smoke/tobacco ratios for NNN and NNK. These ratios were corrected for ventilation and cigarette length. It is shown that the ratios are constant and neither depend on the nicotine level nor on the nitrate level of the tobacco except for NNK in the nitrate rich dark tobacco type cigarettes. For nonfilter cigarettes the transfer rates of NNN and NNK which had been corrected for ventilation and cigarette length amounted to 23 or 34% respectively. For filter cigarettes a transfer rate of 13% for NNN and 23% for NNK was calculated. Furthermore it is shown that the mainstream smoke/tobacco ratios for NNN and NNK are constant over the whole length of the cigarettes except for NNK in dark tobacco type cigarettes. The results of this investigation indicate that pyrosynthesis of NNN does not occur and that it is very unlikely for NNK at least for lower nitrate levels. Thus with few exceptions the TSNA burden of smokers is predominantly influenced by the amount of preformed NNN and NNK in tobacco.  相似文献   

18.
The tobacco-specific nitrosamine N’-nitrosonornicotine(NNN) induces esophageal but not liver tumors in the rat. Thismay in part be due to tissue-specific differences in the activationof this nitrosamine. Therefore, the metabolism of NNN by microsomesfrom the mucosa of the rat esophagus was characterized and comparedto its metabolism by liver microsomes. Esophageal microsomesmetabolized NNN to both 4-hydroxy-l-(3-pyridyl)-l-butanone and2-hydroxy-5-(3-pyridyI)tetrahydrofuran, the products of 2’-and 5’-hydroxylation of the pyrrolidine ring, respectively.This activity required an NADPH-generating system and was inhibitedby carbon monoxide, suggesting that it s mediated by a cytochromeP450 enzyme. The apparent tfM for total a-hydroxylation of NNNby esophageal microsomes was 49 ± 6.5 µM and Vmax,was 113 ± 3.7 pmol/mg/min. The ratio of 2’-hydroxylationto 5’-hydroxylation was 3.2 ± 0.5 when the NNNconcentration was varied from 1 µM to 2 mM. 2’-Hydroxylationis believed to be the activation pathway responsible for thetumorigenicity of NNN. In contrast, the ratio of 2’- to5’-hydroxylation of NNN by liver microsomes was between0.71 and 0.23 depending on the concentration of NNN used. Hepaticmicrosomal metabolism of NNN was not saturated at 2 mM NNN,the highest concentration of NNN used. These results confirmthe existence of an esophageal enzyme with high affinity fora-hydroxylation of NNN; it is probably a cytochrome P450. Ifthis enzyme exists in the liver its activity is masked by highmM, high Vmax, enzymes which also a-hydroxylate NNN. These enzymesare not present in the esophagus. The presence of a low KM esophagealenzyme that 2-hydroxylates NNN is consistent with the hypothesisthat NNN esophageal tumorigenicity is at least in part due tothe efficient activation of NNN in this tissue.  相似文献   

19.
The molecular dosimetry for O6-methylguanine (O6MG) formation in DNA from rat lung and pulmonary cells was compared following treatment for 4 days with equimolar doses of 4-(N-methyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a potent pulmonary carcinogen or nitrosodimethylamine (NDMA), a weak carcinogen in rat lung. The dose response for O6MG formation from NNK was biphasic; the O6MG to dose ratio, an index of alkylation efficiency, increased dramatically as the dose of carcinogen was decreased. In contrast, the dose-response curve for methylation by NDMA appeared opposite of that for NNK with alkylation efficiency increasing as a function of dose. These results suggested that high and low Km pathways exist for the activation of NNK, whereas only high Km pathways may be involved in NDMA activation. Furthermore, DNA methylation by NNK was cell selective with the highest levels in the Clara cell, whereas methylation by NDMA was not. DNA methylation in the Clara cell was 50-fold greater by NNK than by NDMA at equimolar doses (0.005 mmol/kg). Thus, differences in O6MG formation, specifically the presence of a high affinity pathway in the Clara cell for activation of NNK, may explain why following low dose exposure, NNK is a potent pulmonary carcinogen while NDMA is not. Different cytochrome P-450 isozymes also appear to be involved in the activation of NNK and NDMA. Inhibition of in vitro methylation (with calf thymus DNA and lung microsomes) by antibodies to cytochrome P-450 isozymes provided evidence that a homolog of rabbit cytochrome P-450(2) (cytochrome P-450b) may be important in the activation of NNK in rat lung, whereas cytochrome P-450(5) may activate NDMA. A 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-inducible cytochrome P-450 isozyme (P-450c) may also be involved in the activation of NNK but not NDMA. Treatment with TCDD increased both NNK activation by pulmonary microsomes and the formation of O6MG in Clara cells and type II cells incubated in vitro with NNK. alpha-Naphthoflavone (alpha-NF), a specific inhibitor of cytochrome P-450c reversed the increase in methylation by TCDD-induced microsomes but did not inhibit in vitro activation of NNK using microsomes from untreated rats. However, NNK mediated O6MG formation in Clara cells, but not in type II cells incubated with alpha-NF, was decreased by 21%. These data indicate that both cytochrome P-450b and P-450c are probably involved in the activation of NNK in Clara cells from untreated rats.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号