首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The potency of newly developed bispyridinium compounds (K117, K127) to reactivate tabun-inhibited acetylcholinesterase and reduce tabun-induced lethal toxic effects was compared with currently available oximes (obidoxime, trimedoxime, oxime HI-6) by using in vivo methods. A study that determined the percentage of reactivation of tabun-inhibited blood and tissue acetylcholinesterase in poisoned rats showed that the reactivating efficacy of newly developed oxime K127 is comparable with obidoxime and trimedoxime in blood but lower than the reactivating potency of trimedoxime and obidoxime in the diaphragm and brain. The potency of another newly developed K117 to reactivate tabun-inhibited acetylcholinesterase is comparable with obidoxime or trimedoxime in the diaphragm, but it is significantly lower than the reactivating potency of trimedoxime and obidoxime in the blood and brain. The oxime, K127, was also found to be relatively effective in reducing lethal toxic effects in tabun-poisoned mice. Its therapeutic efficacy is consistent with the therapeutic potency of obidoxime. On the other hand, the potency of the oxime, K117, to reduce acute toxicity of tabun is significantly lower compared to trimedoxime and obidoxime. The therapeutic efficacy of K117 and K127 corresponds to their potency to reactivate tabun-inhibited acetylcholinesterase, especially in the diaphragm and brain. Contrary to obidoxime and trimedoxime, the oxime, HI-6, is not an effective oxime in the reactivation of tabun-inhibited acetycholinesterase and in reducing the lethal effects of tabun. The reactivating and therapeutic potency of both newly developed oximes does not prevail over the effectiveness of currently available obidoxime and trimedoxime and, therefore, they are not suitable for their replacement of commonly used oximes for the treatment of acute tabun poisoning.  相似文献   

2.
The potency of newly developed bispyridinium compounds (K117, K127) to reactivate tabun-inhibited acetylcholinesterase and reduce tabun-induced lethal toxic effects was compared with currently available oximes (obidoxime, trimedoxime, oxime HI-6) by using in vivo methods. A study that determined the percentage of reactivation of tabun-inhibited blood and tissue acetylcholinesterase in poisoned rats showed that the reactivating efficacy of newly developed oxime K127 is comparable with obidoxime and trimedoxime in blood but lower than the reactivating potency of trimedoxime and obidoxime in the diaphragm and brain. The potency of another newly developed K117 to reactivate tabun-inhibited acetylcholinesterase is comparable with obidoxime or trimedoxime in the diaphragm, but it is significantly lower than the reactivating potency of trimedoxime and obidoxime in the blood and brain. The oxime, K127, was also found to be relatively effective in reducing lethal toxic effects in tabun-poisoned mice. Its therapeutic efficacy is consistent with the therapeutic potency of obidoxime. On the other hand, the potency of the oxime, K117, to reduce acute toxicity of tabun is significantly lower compared to trimedoxime and obidoxime. The therapeutic efficacy of K117 and K127 corresponds to their potency to reactivate tabun-inhibited acetylcholinesterase, especially in the diaphragm and brain. Contrary to obidoxime and trimedoxime, the oxime, HI-6, is not an effective oxime in the reactivation of tabun-inhibited acetycholinesterase and in reducing the lethal effects of tabun. The reactivating and therapeutic potency of both newly developed oximes does not prevail over the effectiveness of currently available obidoxime and trimedoxime and, therefore, they are not suitable for their replacement of commonly used oximes for the treatment of acute tabun poisoning.  相似文献   

3.
The potency of three newly developed bispyridinium compounds (K454, K456, K458) to reactivate tabun-inhibited acetylcholinesterase and reduce tabun-induced lethal toxic effects was compared with the oxime K203 and trimedoxime using in vivo methods. The study determining percentage of reactivation of tabun-inhibited diaphragm and brain acetylcholinesterase in poisoned rats showed that the reactivating efficacy of all newly developed oximes is comparable with K203 but lower than the reactivating potency of trimedoxime in diaphragm. In the brain, their potency to reactivate tabun-inhibited acetylcholinesterase is lower compared with trimedoxime and the oxime K203. All three newly developed oximes were also found to be relatively effective in reducing lethal toxic effects in tabun-poisoned mice. Their therapeutic efficacy is consistent with the therapeutic potency of the oxime K203. On the other hand, their potency to reduce acute toxicity of tabun is significantly lower compared with trimedoxime. In conclusion, the reactivating and therapeutic potency of all three newly developed oximes does not prevail the effectiveness of the oxime K203 and trimedoxime and, therefore, they are not suitable for their replacement of commonly used oximes for the treatment of acute tabun poisoning.  相似文献   

4.
The potency of newly developed asymmetric bispyridinium oximes (K027, K048) in reactivating tabun-inhibited acetylcholinesterase (AChE) and in eliminating tabun-induced acute toxic effects was compared with commonly used oximes (obidoxime, trimedoxime, the oxime HI-6) using in vivo methods. Studies determined the percent of reactivation of tabun-inhibited blood and tissue AChE in poisoned rats and showed that the reactivating efficacy of both newly developed oximes is comparable with obidoxime and trimedoxime, the most efficacious known reactivators of tabun-inhibited AChE. These were also found to be sufficiently efficacious in the elimination of acute lethal toxic effects in tabun-poisoned rats. The oxime HI-6, relatively efficacious against soman, did not seem to be an adequately effective oxime in reactivation of tabun-inhibited AChE and in counteracting acute lethal effects of tabun. In addition, our results confirm that the efficacy of oximes in reactivating tabun-inhibited AChE in blood, diaphragm, and brain correlates with the potency of oximes in protecting rats poisoned with supralethal doses of tabun.  相似文献   

5.
The potency of newly developed reactivators of nerve agent–inhibited acetylcholinesterase (K347, K628) in reactivating tabun-inhibited acetylcholinesterase and reducing tabun-induced lethal toxic effects was compared with currently available oximes (obidoxime, the oxime HI-6), using in vivo methods. Studies that determined the percentage of reactivation of tabun-inhibited blood and tissue acetycholinesterase in poisoned rats showed that the reactivating efficacy of both newly developed oximes is comparable with the oxime HI-6, but it is significantly lower than the reactivating effects of obidoxime. The monopyridinium oxime, K347, was also found to be able to reduce lethal toxic effects in tabun-poisoned mice, while the therapeutic efficacy of another newly developed bispyridinium oxime, K628, was negligible. The therapeutic efficacy of K347 was higher than the potency of the oxime, HI-6, but it was lower than the therapeutic effects of obidoxime. Thus, the reactivating and therapeutic potency of both newly developed oximes (K347, K628) was not more effective then currently available oximes, and therefore, they are not suitable for the replacement of commonly used oximes (especially obidoxime) for the treatment of acute tabun poisoning.  相似文献   

6.
The potency of two newly developed oximes (K361 and K378) to reactivate tabun-inhibited cholinesterase and to reduce acute toxicity of tabun was compared with the oxime K203 and trimedoxime using in vivo methods. The study determining percentage of reactivation of tabun-inhibited diaphragm cholinesterase in poisoned rats showed that the reactivating efficacy of the oxime K378 is slightly lower than the reactivating potency of the oxime K203 and trimedoxime while the ability of the oxime K361 to reactivate tabun-inhibited cholinesterase is markedly lower compared with the oxime K203 and trimedoxime. In the brain, the potency of both newly developed oximes to reactivate tabun-inhibited cholinesterase was negligible. The therapeutic efficacy of both newly developed oximes roughly corresponds to their weak reactivating efficacy. Their potency to reduce acute toxicity of tabun was significantly lower compared with the oxime K203 as well as trimedoxime. In conclusion, the reactivating and therapeutic potency of both newly developed oximes does not prevail the effectiveness of the oxime K203 and trimedoxime and, therefore, they are not suitable for their replacement of commonly used oximes for the treatment of acute tabun poisoning.  相似文献   

7.
The potency of bispyridinium acetylcholinesterase reactivator KR-22934 in reactivating tabun-inhibited acetylcholinesterase and reducing tabun-induced lethal toxic effects was compared with the oxime K203 and commonly used oximes. Studies determining percentage of reactivation of tabun-inhibited blood and tissue acetylcholinesterase in rats showed that the reactivating efficacy of KR-22934 was slightly higher than the reactivating efficacy of K203 and roughly corresponded to the reactivating efficacy of obidoxime and trimedoxime in blood and diaphragm. On the other hand, the oxime KR-22934 was not able to reactivate tabun-inhibited acetylcholinesterase in the brain. The therapeutic efficacy of all oximes studied approximately corresponded to their reactivating efficacy. Based on the results, one can conclude that the oxime KR-22934 is not suitable for the replacement of commonly used oximes for the antidotal treatment of tabun poisoning in spite of its potency to reactivate tabun-inhibited acetylcholinesterase in the peripheral compartment (blood, diaphragm).  相似文献   

8.
The potency of bispyridinium acetylcholinesterase reactivator KR-22934 in reactivating tabun-inhibited acetylcholinesterase and reducing tabun-induced lethal toxic effects was compared with the oxime K203 and commonly used oximes. Studies determining percentage of reactivation of tabun-inhibited blood and tissue acetylcholinesterase in rats showed that the reactivating efficacy of KR-22934 was slightly higher than the reactivating efficacy of K203 and roughly corresponded to the reactivating efficacy of obidoxime and trimedoxime in blood and diaphragm. On the other hand, the oxime KR-22934 was not able to reactivate tabun-inhibited acetylcholinesterase in the brain. The therapeutic efficacy of all oximes studied approximately corresponded to their reactivating efficacy. Based on the results, one can conclude that the oxime KR-22934 is not suitable for the replacement of commonly used oximes for the antidotal treatment of tabun poisoning in spite of its potency to reactivate tabun-inhibited acetylcholinesterase in the peripheral compartment (blood, diaphragm).  相似文献   

9.
The reactivating and therapeutic efficacy of three original bispyridinium oximes (K727, K733 and K203) and one currently available oxime (trimedoxime) was evaluated in tabun‐poisoned rats and mice. The oxime‐induced reactivation of tabun‐inhibited acetylcholinesterase was measured in diaphragm and brain of tabun‐poisoned rats. The results showed that the reactivating efficacy of two recently developed oximes (K727 and K733) does not achieve the level of the reactivation of tabun‐inhibited acetylcholinesterase induced by oxime K203 and trimedoxime. While all oximes studied were able to increase the activity of tabun‐inhibited acetylcholinesterase in diaphragm, oxime K733 was not able to reactivate tabun‐inhibited acetylcholinesterase in the brain. The therapeutic efficacy of all oximes studied roughly corresponds to their reactivating efficacy. While both recently developed oximes were able to reduce acute toxicity of tabun less than 1.5‐fold, another original oxime K203 and commonly used trimedoxime reduced the acute toxicity of tabun almost two times. In conclusion, the reactivating and therapeutic potency of both newly developed oximes does not prevail the effectiveness of oxime K203 and trimedoxime, and therefore, they are not suitable for their replacement of commonly used oximes for the antidotal treatment of acute tabun poisoning.  相似文献   

10.
The influence of the combination of oximes on the reactivating and therapeutic efficacy of antidotal treament of acute tabun poisoning was evaluated. The ability of two combinations of oximes (HI‐6 + obidoxime and HI‐6 + K203) to reactivate tabun‐inhibited acetylcholinesterase and reduce acute toxicity of tabun was compared with the reactivating and therapeutic efficacy of antidotal treatment involving single oxime (HI‐6, obidoxime, K203) using in vivo methods. Studies determining percentage of reactivation of tabun‐inhibited blood and tissue acetylcholinesterase in poisoned rats showed that the reactivating efficacy of both combinations of oximes is higher than the reactivating efficacy of the most effective individual oxime in blood and diaphragm and comparable with the reactivating effects of the most effective individual oxime in brain. Moreover, both combinations of oximes were found to be slightly more efficacious in the reduction of acute lethal toxic effects in tabun‐poisoned mice than the antidotal treatment involving individual oxime. A comparison of reactivating and therapeutic efficacy of individual oximes showed that the newly developed oxime K203 is slightly more effective than commonly used obidoxime and both of them are markedly more effective than the oxime HI‐6. Based on the obtained data, we can conclude that the antidotal treatment involving chosen combinations of oximes brings beneficial effects for the potency of antidotal treatment to reactivate tabun‐inhibited acetylcholinesterase in rats and to reduce acute toxicity of tabun in mice. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Tabun (O-ethyl-N,N-dimethyl phosphoramidocyanidate) belongs to highly toxic organophosphorus compounds misused as chemical warfare agents for military as well as terroristic purposes. The antidotal treatment of tabun acute poisonings still represents a serious problem and the development of new, more effective AChE reactivators to achieve the satisfactorily effective antidotal treatment of acute poisonings with tabun still represents very important goal. Since 2003, we have prepared around 200 new AChE reactivators. Their potency to reactivate tabun-inhibited acetylcholinesterase has been subsequently evaluated using our in vitro screening test. Afterwards, promising compounds were selected and kinetic parameters and reactivation constants were determined. Then, the best reactivators were subjected to the in vivo studies (toxicity test, the evaluation of therapeutic, reactivating and neuroprotective efficacy) and their potency to counteract the acute toxicity of tabun is compared to the therapeutic, reactivating and neuroprotective efficacy of commonly used oximes - obidoxime and the oxime HI-6. According to the results obtained, the newly synthesized oxime K075 showed the highest potency to reduce tabun-induced acute lethal toxicity while the therapeutic potency of obidoxime and the oxime HI-6 was significantly lower. The therapeutic efficacy of oximes studied corresponds to their reactivating efficacy in vivo as well as in vitro. The potency of all newly synthesized oximes to reactivate tabun-inhibited AChE is comparable with obidoxime with the exception of K074 that is significantly more efficacious in the brain. In addition, all newly synthesized oximes combined with atropine seem to be effective antidotes for a decrease in tabun-induced acute neurotoxicity. While the neuroprotective efficacy of obidoxime in combination with atropine is similar to the potency of newly synthesized oximes, the ability of the oxime HI-6 combined with atropine to counteract tabun-induced acute neurotoxicity is significantly lower. Due to their therapeutic, reactivating and neuroprotective efficacy, all newly synthesized oximes appear to be suitable oximes for the antidotal treatment of acute tabun poisonings.  相似文献   

12.
The influence of the combination of oximes on the reactivating and therapeutic efficacy of antidotal treatment of acute soman poisoning was evaluated. The ability of two combinations of oximes (HI-6 + trimedoxime and HI-6 + K203) to reactivate soman-inhibited acetylcholinesterase and reduce acute toxicity of soman was compared with the reactivating and therapeutic efficacy of antidotal treatment involving single oxime (HI-6, trimedoxime, K203) using in vivo model. Studies determining percent of reactivation of soman-inhibited blood and diaphragm acetylcholinesterase in poisoned rats showed that the reactivating efficacy of both combinations of oximes is slightly greater than the reactivating efficacy of the most effective individual oxime, but the difference among them is not significant. Both combinations of oximes were found to be as effective in the reduction of acute lethal toxic effects in soman-poisoned mice as the antidotal treatment involving the most efficacious individual oxime. Thus, the efficacy of oximes is comparative in rats vs mice. A comparison of reactivating and therapeutic efficacy of individual oximes showed that the newly developed oxime K203 is approximately as effective as commonly used trimedoxime; nevertheless, their reactivating and therapeutic efficacy is markedly lower compared to the oxime HI-6. Based on the obtained data, one can conclude that the antidotal treatment involving chosen combinations of oximes does not significantly influence the potency of the most effective individual oxime (HI-6) to reactivate soman-inhibited rat acetylcholinesterase and to reduce acute toxicity of soman.  相似文献   

13.
The potency of newly developed oximes (K074, K075) and commonly used oximes (obidoxime, trimedoxime, and HI-6) to counteract tabun or cyclosarin-induced acute toxic effects was studied in mice. The therapeutic efficacy of trimedoxime and both newly developed oximes (K074, K075) was significantly higher than the potency of obidoxime and the oxime HI-6 in the case of acute tabun poisonings. On the other hand, the oxime HI-6 was significantly more efficacious than other studied oximes when mice were intoxicated with cyclosarin. The findings support the hypothesis that the therapeutic efficacy of oximes depends on the type of nerve agent. Due to their therapeutic efficacy, both newly developed K oximes can be considered to be promising oximes for the antidotal treatment of acute tabun poisonings, while the oxime HI-6 is still the most promising oxime for the treatment of acute cyclosarin poisonings due to its high potency to counteract cyclosarin-induced acute toxic effects.  相似文献   

14.
The ability of 2 combinations of oximes (HI-6 + trimedoxime and HI-6 + K203) to reactivate VX-inhibited acetylcholinesterase and reduce acute toxicity of VX was compared with the reactivating and therapeutic efficacy of antidotal treatment involving a single oxime (HI-6, trimedoxime, K203) in rats and mice. Our results showed that the reactivating efficacy of both combinations of oximes studied in rats is significantly higher than the reactivating efficacy of all individual oximes in diaphragm and roughly corresponds to the most effective individual oxime in blood and brain. Both combinations of oximes were found to be more effective in the reduction of acute lethal toxicity of VX in mice than the antidotal treatment involving the most efficacious individual oxime although the difference is not significant. Based on the obtained data, we can conclude that the antidotal treatment involving the chosen combinations of oximes brings benefit for the reactivation of VX-inhibited acetylcholinesterase in rats and for the antidotal treatment of VX-induced acute poisoning in mice.  相似文献   

15.
The influence of the combinations of oximes on the reactivating and therapeutic efficacy of antidotal treament of acute sarin poisoning was evaluated in this study. The ability of two combinations of oximes (HI-6 + trimedoxime and HI-6 + K203) to reactivate sarin-inhibited acetylcholinesterase and reduce acute toxicity of sarin was compared with the reactivating and therapeutic efficacy of antidotal treatment involving single oxime (HI-6, trimedoxime, K203) using in vivo methods. Studies determining percentage of reactivation of sarin-inhibited blood and tissue acetylcholinesterase in poisoned rats showed that the reactivating efficacy of the combination of oximes involving HI-6 and K203 is slightly higher than the reactivating efficacy of the most effective individual oxime in diaphragm and brain but the difference between them is not significant. The ability of combination of oximes involving HI-6 and trimedoxime to reactivate sarin-inhibited acetylcholinesterase roughly corresponds to the reactivating effects of the most effective individual oxime in blood as well as tissues. Moreover, both combinations of oximes were found to be as efficacious in the reduction of acute lethal toxic effects in sarin-poisoned mice as the most effective individual oxime. A comparison of reactivating and therapeutic efficacy of individual oximes showed that the oxime HI-6 is markedly more effective than the oxime K203 and trimedoxime. Based on the obtained data, we conclude that the antidotal treatment involving chosen combinations of oximes does not significantly influence the ability of the most effective individual oxime (HI-6) to reactivate sarin-inhibited rat acetylcholinesterase and to reduce acute toxicity of sarin in mice.  相似文献   

16.
The potency of newly developed oximes (K074, K075) and commonly used oximes (obidoxime, trimedoxime, and HI-6) to counteract tabun or cyclosarin-induced acute toxic effects was studied in mice. The therapeutic efficacy of trimedoxime and both newly developed oximes (K074, K075) was significantly higher than the potency of obidoxime and the oxime HI-6 in the case of acute tabun poisonings. On the other hand, the oxime HI-6 was significantly more efficacious than other studied oximes when mice were intoxicated with cyclosarin. The findings support the hypothesis that the therapeutic efficacy of oximes depends on the type of nerve agent. Due to their therapeutic efficacy, both newly developed K oximes can be considered to be promising oximes for the antidotal treatment of acute tabun poisonings, while the oxime HI-6 is still the most promising oxime for the treatment of acute cyclosarin poisonings due to its high potency to counteract cyclosarin-induced acute toxic effects.  相似文献   

17.
The efficacy of various oximes to reactivate acetylcholinesterase phosphorylated by tabun (O-ethyl-N,N-dimethyl phosphoramidocyanidate) was tested by in vitro and in vivo methods. The oximes commonly used for the treatment of acute poisonings with highly toxic organophosphates appeared to be almost ineffective (HI-6, pralidoxime, methoxime) or just slightly effective (obidoxime) against tabun. On the other hand, trimedoxime seemed to be a significantly more efficacious reactivator than the others in the case of tabun poisonings. In vitro, the concentration of trimedoxime corresponding to 1.0 mmol/l was able to reach 50% reactivation of tabun-inhibited brain acetylcholinesterase. Higher reactivating potency of trimedoxime in comparison with the other commonly used oximes was demonstrated by in vivo method, too. In addition, other structural analogues of trimedoxime were found to be efficacious in counteracting tabun-induced acetylcholinesterase inhibition although not as efficacious as trimedoxime itself. Some effective acetylcholinesterase reactivators were characterised by dissociation constant of enzyme-reactivator complex as well as enzyme-inhibitor-reactivator complex and by rate constant of reactivation.  相似文献   

18.
Abstract

The ability of two novel bispyridinium oximes K727 and K733 and currently available oximes (HI-6, obidoxime) to reactivate sarin-inhibited acetylcholinesterase and to reduce acute toxicity of sarin was evaluated. To investigate the reactivating efficacy of the oximes, the rats were administered intramuscularly with atropine and oximes in equitoxic doses corresponding to 5% of their LD50 values at 1?min after the intramuscular administration of sarin at a dose of 24?µg/kg (LD50). The activity of acetylcholinesterase was measured at 60?min after sarin poisoning. The LD50 value of sarin in non-treated and treated mice was assessed using probit-logarithmical analysis of death occurring within 24?h after intramuscular administration of sarin at five different doses. In vivo determined percentage of reactivation of sarin-inhibited rat blood, diaphragm and brain acetylcholinesterase showed that the potency of both novel oximes K727 and K733 to reactivate sarin-inhibited acetylcholinesterase roughly corresponds to the reactivating efficacy of obidoxime. On the other hand, the oxime HI-6 was found to be the most efficient reactivator of sarin-inhibited acetylcholinesterase. While the oxime HI-6 was able to reduce the acute toxicity of sarin >3 times, both novel oximes and obidoxime decreased the acute toxicity of sarin <2 times. Based on the results, we can conclude that the reactivating and therapeutic efficacy of both novel oximes K727 and K733 is significantly lower compared to the oxime HI-6 and, therefore, they are not suitable for the replacement of the oxime HI-6 for the antidotal treatment of acute sarin poisoning.  相似文献   

19.
The neuroprotective effects of newly developed oximes (K027, K048) and currently available oximes (obidoxime, HI-6) in combination with atropine in rats poisoned with tabun at a sublethal dose (170 microg kg(-1) i.m.; 80% of LD(50) value) were studied. The tabun-induced neurotoxicity was monitored using a functional observational battery and an automatic measurement of motor activity. The neurotoxicity of tabun was monitored at 24 h and 7 days following tabun challenge. The results indicate that the oxime HI-6 in combination with atropine was not able to protect the rats from the lethal effects of tabun. Two non-treated tabun-poisoned rats and one tabun-poisoned rat treated with atropine combined with HI-6 died within 2 h. On the other hand, all other tested oximes combined with atropine allowed all the tabun-poisoned rats to survive 7 days following tabun challenge. Both newly developed oximes combined with atropine seem to be sufficiently effective antidotes for a decrease in tabun-induced neurotoxicity in the case of sublethal poisoning although they are not able to eliminate tabun-induced neurotoxicity completely. The neuroprotective efficacy of obidoxime in combination with atropine approached the potency of newly developed oximes but the ability of the oxime HI-6 to counteract tabun-induced acute neurotoxicity was significantly lower, especially at 24 h after tabun poisoning. Due to their neuroprotective effects, both newly developed oximes appear to be suitable oximes for the antidotal treatment of acute tabun poisoning.  相似文献   

20.
The potency of newly developed and currently used oximes to reactivate sarin-inhibited acetylcholinesterase was evaluated using in vitro methods. A rat brain homogenate was used as a source of acetylcholinesterase. Significant differences in reactivation potency among all tested oximes were observed. Although the ability of newly developed oximes to reactivate sarin-inhibited acetylcholinesterase does not reach the reactivating potency of the oxime HI-6, the oxime K033 seems to be a more efficacious reactivator of sarin-inhibited acetylcholinesterase than other currently available oximes (pralidoxime, obidoxime) at concentrations (10(-5)-10(-4)M) corresponding to recommended doses in vivo. The results of our study also confirm that the reactivation potency of the tested reactivators depends on many factors, such as (1) the number of pyridinium rings, (2) the number of oxime groups and their position, and (3) the length and the shape of the linkage bridge between pyridinium rings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号