首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Ultraviolet B (UVB) radiation induces photoageing by upregulating the expression of matrix metalloproteinases (MMPs) in human skin cells. Dihydroavenanthramide D (DHAvD) is a synthetic analog to naturally occurring avenanthramide, which is the active component in oats. Although anti‐inflammatory, anti‐atherosclerotic and antioxidant effects have been reported, the antiphotoageing effects of DHAvD are yet to be understood. In this study, we investigated the inhibitory effects of DHAvD on UVB‐induced production of reactive oxygen species (ROS) and expression of MMPs, and its molecular mechanism in UVB‐irradiated human dermal fibroblasts. Western blot and real‐time PCR analyses revealed that DHAvD inhibited UVB‐induced MMP‐1 and MMP‐3 expression. It also significantly blocked UVB‐induced ROS generation in fibroblasts. Additionally, DHAvD attenuated UVB‐induced phosphorylation of MAPKs, activation of NF‐κB and AP‐1. DHAvD regulates UVB‐irradiated MMP expression by inhibiting ROS‐mediated MAPK/NF‐κB and AP‐1 activation. DHAvD may be a useful candidate for preventing UV light‐induced skin photoageing.  相似文献   

2.
3.
Azelaic acid (AzA) has been used for the treatment for inflammatory skin diseases, such as acne and rosacea. Interestingly, an improvement in skin texture has been observed after long‐time treatment with AzA. We previously unrevealed that anti‐inflammatory activity of AzA involves a specific activation of PPARγ, a nuclear receptor that plays a relevant role in inflammation and even in ageing processes. As rosacea has been considered as a photo‐aggravated disease, we investigated the ability of AzA to counteract stress‐induced premature cell senescence (SIPS). We employed a SIPS model based on single exposure of human dermal fibroblasts (HDFs) to UVA and 8‐methoxypsoralen (PUVA), previously reported to activate a senescence‐like phenotype, including long‐term growth arrest, flattened morphology and increased synthesis of matrix metalloproteinases (MMPs) and senescence‐associated β‐galactosidase (SA‐β‐gal). We found that PUVA‐treated HDFs grown in the presence of AzA maintained their morphology and reduced MMP‐1 release and SA‐β‐galactosidase‐positive cells. Moreover, AzA induced a reduction in ROS generation, an up‐modulation of antioxidant enzymes and a decrease in cell membrane lipid damages in PUVA‐treated HDFs. Further evidences of AzA anti‐senescence effect were repression of p53 and p21, increase in type I pro‐collagen and abrogation of the enhanced expression of growth factors, such as HGF and SCF. Interestingly, PUVA‐SIPS showed a decreased activation of PPARγ and AzA counteracted this effect, suggesting that AzA effect involves PPARγ modulation. All together these data showed that AzA interferes with PUVA‐induced senescence‐like phenotype and its ability to activate PPAR‐γ provides relevant insights into the anti‐senescence mechanism.  相似文献   

4.
Abstract: Oestrogen deficiency is regarded as the main causative factor in postmenopausal skin ageing and photoageing. While women after menopause experience low levels of oestrogen because of cease of ovarian function, they are also exposed to high levels of iron as a result of cessation of menstruation. In this study, we investigated whether this increase in iron presents a risk to the postmenopausal skin. Because of the lack of appropriate animal models to closely mimic the low oestrogen and high iron conditions, we tested the hypothesis in a high iron and low oestrogen culture model. Here, we showed that primary human dermal fibroblasts exposed to iron did not affect the baseline levels of matrix metalloproteinase‐1 (MMP‐1) activity. However, the iron‐exposed fibroblasts were sensitized to UVA exposure, which resulted in a synergistic increase in MMP‐1. UVA activated the three members of MAPK family: ERKs, p38, and JNKs. Additional activation of ERKs by iron contributed to the synergistic increases. Primary normal human epidermal keratinocytes (NHEK) did not respond to iron or UVA exposure as measured by MMP‐1, but produced tumor necrosis factor‐alpha (TNF‐α) in the media, which then stimulated MMP‐1 in fibroblasts. Our results indicate that iron and UVA increase MMP‐1 activity in dermal fibroblasts not only directly through ERK activation but also by an indirect paracrine loop through TNF‐α released by NHEK. We conclude that in addition to oestrogen deficiency, increased iron as a result of menopause could be a novel risk factor by sensitizing postmenopausal skin to solar irradiation.  相似文献   

5.
6.
Decorin is a natural transforming growth factor‐β1 (TGF‐β1) antagonist. Reduced decorin synthesis is associated with dermal scarring, and increased decorin expression appears to reduce scar tissue formation. To investigate the therapeutic potential of decorin for keloids, human dermal fibroblasts (HDFs) and keloid‐derived fibroblasts (KFs) were transduced with decorin‐expressing adenovirus (dE1‐RGD/GFP/DCN), and we examined the therapeutic potential of decorin‐expressing Ad for treating pathologic skin fibrosis. Decorin expression was examined by immunofluorescence assay on keloid tissues. HDFs and KFs were transduced with dE1‐RGD/GFP/DCN or control virus, and protein levels of decorin, epidermal growth factor receptor (EGFR) and secreted TGF‐β1 were assessed by Western blotting and ELISA. And type I and III collagen, and matrix metalloproteinase‐1 (MMP‐1) and matrix metalloproteinase‐3 (MMP‐3) mRNA levels were measured by real‐time RT‐PCR. Additionally, we immunohistochemically investigated the expression levels of the major extracellular matrix (ECM) proteins in keloid spheroids transduced with dE1‐RGD/GFP/DCN. Lower decorin expression was observed in the keloid region compared to adjacent normal tissues. After treatment with dE1‐RGD/GFP/DCN, secreted TGF‐β1 and EGFR protein expressions were decreased in TGF‐β1‐treated HDFs and KFs. Also, type I and III collagen mRNA levels were decreased, and the expression of MMP‐1 and MMP‐3 mRNA was strongly upregulated. In addition, the expression of type I and III collagen, fibronectin and elastin was significantly reduced in dE1‐RGD/GFP/DCN‐transduced keloid spheroids. These results support the utility of decorin‐expressing adenovirus to reduce collagen synthesis in KFs and keloid spheroid, which may be highly beneficial in treating keloids.  相似文献   

7.
8.
9.
Increased matrix metalloproteinase 1 (MMP‐1) expression is a feature of photo‐aged skin. We investigated the effects of baicalein and sulphoraphane on ultraviolet B (UVB) irradiation–induced MMP‐1 expression and apoptosis using human dermal fibroblasts. UVB irradiation not only increased MMP‐1 expression, but also caused apoptosis. Both baicalein and sulphoraphane protected cells from UVB irradiation–induced apoptosis, but only baicalein inhibited MMP‐1 expression. UVB irradiation activated 12‐lipoxygenase, and its product, 12‐hydroxyeicosatetraenoic acid, activated TRPV1 channels. The resulting UVB irradiation–induced Ca2+ increase was blocked by the 12‐lipoxygenase inhibitor baicalein and the TRPV1 blocker capsazepine, but not by the Nrf2 inducer sulphoraphane. UVB irradiation also increased ROS generation and decreased Nrf2 protein levels. UVB irradiation–induced MMP‐1 expression was blocked by the Ca2+ chelator BAPTA, by capsazepine and by TRPV1 silencing. However, induction was unaffected by the antioxidant N‐acetylcysteine. ERK phosphorylation and JNK phosphorylation were induced by UVB irradiation, but only ERK phosphorylation was Ca2+ sensitive. Increased MMP‐1 expression was blocked by PD98059, but not by SP600125. Thus, increased MMP‐1 expression is mediated by increased cytosolic Ca2+ and ERK phosphorylation. UVB irradiation–induced ROS generation is also Ca2+ sensitive, and UVB irradiation–induced apoptosis is caused by increased ROS. Thus, baicalein, by blocking the UVB irradiation–induced cytosolic Ca2+ increase, protects cells from UVB irradiation–induced MMP‐1 expression and apoptosis. In contrast, sulphoraphane, by decreasing cellular ROS, protects cells from only UVB‐induced apoptosis. Thus, targeting 12‐lipoxygenase may provide a therapeutic approach to improving the health of photo‐aged human skin.  相似文献   

10.
11.
We investigated the reported antiphotoaging effects of the major anthocyanidin delphidin and sought to identify its specific molecular target during UVB‐induced MMP‐1 expression. Delphinidin treatment significantly inhibited UVB‐induced MMP‐1 expression in primary cultured human dermal fibroblasts (HDF), an effect associated with the suppression of MKK4‐JNK1/2, MKK3/6‐p38 and MEK‐ERK1/2 phosphorylation. Further investigation revealed that delphinidin significantly inhibited UVB‐induced ROS production and NOX activity. Interestingly, the inhibitory effect of delphinidin on UVB‐induced NOX activity was stronger than that of apocynin, a pharmaceutical NOX inhibitor. Fractioned cell analysis results using a Western blot assay showed that this effect occurred through the inhibition of UVB‐induced P47phox (a NOX subunit) translocation from the cytosol to the membrane. Pull down assays demonstrated that delphinidin binds directly to P47phox in vitro. Collectively, our results suggest that delphinidin targets NOX, resulting in the suppression of UVB‐induced MMP‐1 expression in human dermal fibroblasts.  相似文献   

12.
Background Ultraviolet (UV) irradiation is the main cause of skin photodamage; the resulting modulation of matrix metalloproteinases (MMPs) leads to collagen degradation. There is no easily accessible molecular indicator of early skin UV damage. Objectives In this study, we investigated the effects of Syk kinase on MMP expression and evaluated the sensitivity and usefulness of Syk as an early indicator of skin UV damage. Methods Human dermal fibroblasts (HDFs) were transfected with Syk cDNA to overexpress Syk. MMP‐1 expression and Syk activity were determined by Western blot after UV exposure. The effect of Syk on MMP‐1 expression in HDFs was further explored by either Syk siRNA or a selective Syk inhibitor. Possible downstream molecules of Syk were also evaluated in HDFs upon UV exposure. The relationship between Syk and collagenase was further explored in vivo (MMP‐13, hairless mice). Results Our studies in HDFs demonstrated that both a Syk inhibitor and Syk siRNA were able to inhibit MMP‐1 expression in HDFs exposed to UV and that overexpression of Syk increased MMP‐1 expression and the activity of JNK kinase, but not p38 or Erk1/2 MAP kinase. UV exposure enhanced both expression and activity of Syk in HDFs. Experiments with hairless mice suggested that Syk expression is an earlier indicator of UV exposure than MMP‐13 expression. Conclusions Our results demonstrate that Syk expression correlates well with increase of MMPs (MMP‐1 in humans and MMP‐13 in mice) in response to UV exposure. The findings suggest that Syk may be a novel target for the prevention and treatment of skin photodamage by modulating MMPs.  相似文献   

13.
Curcumin (diferuloylmethane) is a polyphenol derived from turmeric (Curcuma longa), which is commonly used as a spice. Recent studies have shown that curcumin has a wide range of pharmacological activities, including anticarcinogenic, antioxidant, anti‐inflammatory and antiangiogenic activities. However, the antiphotoageing effects of curcumin have yet to be characterized. In this study, we investigated the inhibitory effects of curcumin on matrix metalloproteinase (MMP)‐1 and MMP‐3 expression in human dermal fibroblast cells. Western blot analysis revealed that curcumin inhibited ultraviolet (UV) B‐induced MMP‐1 and MMP‐3 expression. Furthermore, curcumin significantly blocked UVB‐induced reactive oxygen species generation in fibroblasts. Curcumin treatment significantly blocked the UVB‐induced activation of nuclear factor (NF)‐κB and activator protein (AP)‐1. Additionally, curcumin strongly repressed the UVB‐induced phosphorylation of p38 and c‐Jun N‐terminal kinase. Curcumin prevented UVB‐induced MMP expression through mitogen‐activated protein kinase/NF‐κB inhibition and AP‐1 activation. In conclusion, curcumin may be useful for preventing and treating skin photoageing.  相似文献   

14.
Please cite this paper as: Activation of toll‐like receptors 2, 3 or 5 induces matrix metalloproteinase‐1 and ‐9 expression with the involvement of MAPKs and NF‐κB in human epidermal keratinocytes. Experimental Dermatology 2010; 19 : e44–e49. Abstract: Toll‐like receptors (TLRs) on epidermal keratinocytes are the first line of defense against microbe invasion, and matrix metalloproteases (MMPs) regulate inflammation, cell migration and wound healing. In this study, we demonstrate that the mRNA and protein expressions of MMP‐1 and MMP‐9 in human epidermal keratinocytes are induced by ligands for TLR2, TLR3 and TLR5 [Pam3CSK4, Poly(I:C) and flagellin, respectively] in a dose‐dependent manner. We also found that the ligands for TLR2, TLR3 and TLR5 activate the MAP kinases, JNK and p38 MAPK, but not ERK1/2. Furthermore, treatment with the ligands for TLR2, TLR3 and TLR5 also induced the degradation of IκB‐α and activated the nuclear translocation of NF‐κB. MMP‐1 induction by the ligands for TLR2, TLR3 and TLR5 was inhibited by pretreatment with BAY11‐7082 (NF‐κB inhibitor) or SP600125 (JNK inhibitor), whereas MMP‐9 expression was inhibited by pretreatment with BAY11‐7082, SP600125 or SB203580. These findings demonstrate that the activation of TLR2, TLR3 or TLR5 induces the expression of MMP‐1 and MMP‐9 in human epidermal keratinocytes. In addition, NF‐κB or JNK mediated the MMP‐1 expression induced by TLR2, TLR3 and TLR5, whereas NF‐κB, JNK or p38 MAPK mediated the MMP‐9 expression induced by TLR2, TLR3 and TLR5.  相似文献   

15.
Background Basic fibroblast growth factor (bFGF, FGF‐2) has been described as a multipotent cytokine that regulates cell growth as well as differentiation, matrix composition, chemotaxis, cell adhesion and migration in numerous cell types. It is known that bFGF stimulates proliferation of cultured fibroblasts. However, the detailed mechanism of fibroblast proliferation induced by bFGF in vitro still remains to be elucidated. Objectives We investigated the precise effects of bFGF on fibroblast proliferation and the signalling pathways responsible for bFGF‐induced proliferation in cultured human dermal fibroblasts (HDFs). Methods HDFs were cultured with bFGF in the presence or absence of specific inhibitors against MAPK signalling pathways including ERK, JNK and p38. The number of cells was counted and immunoblotting findings were examined for the activation of ERK1/2 and JNK. Furthermore, the inhibitory effects of ERK1, ERK2 and JNK1 were proven by the transfection of siRNA. Results bFGF increased the number of HDFs in a dose‐ and time‐dependent manner. The bFGF‐induced proliferation was suppressed by the MEK inhibitors PD98059 and U0126, and the JNK inhibitor SP600125. bFGF increased the phosphorylation levels of ERK1/2 and JNK1. Treatment with ERK1, ERK2 or JNK1 siRNA significantly inhibited bFGF‐induced proliferation. Conclusions This study indicates that ERK1/2 and JNK pathways play an important role in the bFGF‐mediated effect in HDFs. This study also suggests that controlling ERK1/2 and/or JNK signalling may therefore be a new therapeutic approach for the treatment of chronic and untreatable skin ulcers.  相似文献   

16.
Ultraviolet (UV) irradiation on skin triggers photoageing‐related phenotypes such as formation of wrinkles. UV ray upregulates matrix metalloproteinase‐1 (MMP‐1), which in turn degrades extracellular matrix proteins, mostly collagens. Serum amyloid A1 (SAA1) is an acute‐phase protein of which plasma concentration increases in response to inflammation. Although the expression of SAA1 in the skin was reported, its function in the skin is yet to be studied. In this research, we found that the expression of SAA1 was increased in acute UV‐irradiated buttock skin and photoaged forearm skin in vivo. UV irradiation also increased SAA1 in normal human epidermal keratinocytes (NHEK), and treatment of recombinant human SAA1 (rhSAA1) induced MMP‐1 in normal human dermal fibroblasts (NHDF) but not in NHEK. Next, we demonstrated that NHDF treated with UV‐irradiated keratinocyte‐conditioned media showed the increased MMP‐1 expression; however, this increase of MMP‐1 in NHDF was inhibited by knockdown of SAA1 in NHEK. In addition, knockdown of Toll‐like receptor 4 (TLR4) inhibited rhSAA1‐induced MMP‐1 expression in NHDF. Taken together, our data showed that UV‐induced SAA1 production in NHEK, and this secreted SAA1 induced MMP‐1 expression in NHDF in a paracrine manner through TLR4 signalling pathway. Therefore, our results suggest that SAA1 can be a potential mediator for UV‐induced MMP‐1 expression in human skin.  相似文献   

17.
18.
目的探讨IL1(IL1α,IL1β)对长波紫外线(UVA)辐射后成纤维细胞基质金属蛋白酶(matrixmetalloproteinases,MMPs)表达的影响机制。方法用ELISA法检测UVA辐射后成纤维细胞培养上清MMP1和MMP2的表达。接着用IL1α和IL1β分别处理UVA辐射后的成纤维细胞,用Western免疫印迹法检测其丝裂原活化蛋白激酶(MAPK)的活性;用RTPCR方法检测cfos和cjun的mRNA表达。结果不同剂量UVA(0,1,5,10J/cm2)辐射的成纤维细胞分泌MMP1逐渐上升,对MMP2分泌没有影响。IL1α和IL1β(0,1,10,100ng/ml)促进UVA(10J/cm2)辐射成纤维细胞的MAPK活性表达,并以剂量依赖方式促进cjun的mRNA表达。IL1α还显著增加cfosmRNA表达,但IL1β对cfosmRNA表达无明显影响。IL1α和IL1β促进UVA辐射成纤维细胞分泌MMP1,于100ng/ml时有显著性差异(P均<0.05),但对MMP2分泌无明显影响。结论UVA辐射成纤维细胞分泌MMP1增加,对MMP2分泌没有影响。IL1(IL1α和IL1β)通过促进MAPK活性和cjunmRNA表达,IL1α还促进cfosmRNA表达使UVA辐射成纤维细胞MMP1表达增加,表明IL1在皮肤光老化的真皮胶原过度降解中发挥着重要的作用。  相似文献   

19.
The proliferation of human skin dermal fibroblasts (HDFs) is a critical step in skin fibrosis, and transforming growth factor‐beta1 (TGF‐β1) exerts pro‐oxidant and fibrogenic effects on HDFs. In addition, the oxidative stress system has been implicated in the pathogenesis of skin disease. However, the role of NADPH oxidase as a mediator of TGF‐β1‐induced effects in HDFs remains unknown. Thus, our aim was to investigate the role of NADPH in human skin dermal fibroblasts. Primary fibroblasts were cultured and pretreated with various stimulants. Real‐time Q‐PCR and Western blotting analyses were used for mRNA and protein detection. In addition, siRNA technology was applied for gene knock‐down analysis. Hydrogen peroxide production and 2′,7′‐dichlorofluorescein diacetate (DCFDA) measurement assay were performed. Here, our findings demonstrated that HDFs express key components of non‐phagocytic NADPH oxidase mRNA. TGF‐β1 induced NOX2 and reactive oxygen species formation via NADPH oxidase activity. In contrast, NOX3 was barely detectable, and other NOXs did not display significant changes. In addition, TGF‐β1 phosphorylated MAPKs and increased activator protein‐1 (AP‐1) in a redox‐sensitive manner, and NOX2 suppression inhibited baseline and TGF‐β1‐mediated stimulation of Smad2 phosphorylation. Moreover, TGF‐β1 stimulated cell proliferation, migration, collagen I and fibronectin expression, and bFGF and PAI‐1 secretion: these effects were attenuated by diphenylene iodonium (DPI), an NADPH oxidase inhibitor, and NOX2 siRNA. Importantly, NOX2 siRNA suppresses collagen production in primary keloid dermal fibroblasts. These findings provide the proof of concept for NADPH oxidase as a potential target for the treatment of skin fibrosis.  相似文献   

20.
BACKGROUND: Exposure to solar UV radiation is the main environmental factor that causes premature aging of the skin. Matrix metalloproteinases (MMP)-1 is a member of the MMP family and degrades types I and III collagens, which are the major structural components of the dermis. OBJECTIVE: We evaluated the involvement IL-1beta and macrophage migration inhibitory factor (MIF) in MMP-1 expression under ultraviolet A (UVA) irradiation. METHODS: IL-1beta and MIF in MMP-1 expression in cultured human dermal fibroblasts and the UVA effects on MMPs production using IL-1alpha/beta-deficient mice were analyzed. Furthermore, fibroblasts derived from MIF-deficient mice were used to analyze the effect of IL-1beta-induced MMPs production. RESULTS: IL-1beta-enhanced MIF expression and induced MMP-1 in cultured human dermal fibroblasts. IL-1beta-induced MMP-1 expression is inhibited by neutralizing anti-MIF antibody. Dermal fibroblasts of IL-1alpha/beta-deficient mice produced significantly decreased levels of MMPs compared to wild-type mice after UVA irradiation. Furthermore, fibroblasts of MIF-deficient mice were much less sensitive to IL-1beta-induced MMPs production. On the contrary, IL-1beta produced significantly decreased levels of MMPs in MIF-deficient mice fibroblasts. The up-regulation of MMP-1 mRNA by IL-1beta stimulation was found to be inhibited by a p38 inhibitor and a JNK inhibitor. In contrast, the MEK inhibitor and inhibitor were found to have little effect on expression of MMP-1 mRNA. CONCLUSIONS: IL-1beta is involved in the up-regulation of UVA-induced MMP-1 in dermal fibroblasts, and IL-1beta and MIF cytokine network induce MMP-1 and contribute to the loss of interstitial collagen in skin photoaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号