首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Expression of Indian Hedgehog During Fracture Healing in Adult Rat Femora   总被引:4,自引:0,他引:4  
Indian hedgehog (Ihh) has recently been shown to be expressed in prehypertrophic and hypertrophic chondrocytes during embryonic development, and it has been implicated in the regulation of terminal differentiation of chondrocytes. In this paper we examined the expression of Ihh during fracture healing in an adult rat model. A transverse diaphyseal fracture was made in the right femur, and the expression of Ihh in the fracture callus was examined at 1, 2, and 3 weeks after fracture. Northern blot analysis demonstrated the expression of Ihh mRNA in these tissues. Immunohistological analysis detected hedgehog protein in prehypertrophic chondrocytes in the fracture callus at 1 week after fracture. From 2 weeks and on, positive staining was observed in hypertrophic chondrocytes as well. At 3 weeks, some of the osteoblasts close to the endochondral ossification front were also stained positive for hedgehog protein. Our data indicate that Ihh is expressed in chondrocytes and osteoblasts during the process of fracture healing in adult rat femora, suggesting that Ihh, a regulator of endochondral ossification in embryonic development, may also play a role in the regulation of bone formation during fracture repair in adult animals. Received: 29 March 1999 / Accepted: 30 September 1999  相似文献   

2.
Chondrogenesis is an essential component of endochondral fracture healing, though the molecular and cellular events by which it is regulated have not been fully elucidated. In this study, we used a rat model of closed fracture healing to determine the spatial and temporal expression of genes for cartilage-specific collagens. Furthermore, to determine the effects of basic fibroblast growth factor (bFGF) on chondrogenesis in fracture healing, we injected 100 microg recombinant human bFGF into the fracture site immediately after fracture. In normal calluses, pro-alpha1(II) collagen mRNA (COL2A1) was detected in proliferative chondrocytes beginning on day 4 after the fracture, and pro-alpha1(X) collagen mRNA (COL10A1) in hypertrophic chondrocytes beginning on day 7. In FGF-injected calluses, the cartilage enlarged in size significantly. On day 14, both COL2A1- and COL10A1-expressing cells were more widely distributed, and the amounts of COL2A1 and COL10A1 mRNAs were both approximately 2-fold increased when compared with uninjected fractures. Temporal patterns of expression for these genes were, however, identical to those found in normal calluses. The number of proliferating cell nuclear antigen-positive cells was increased in the non-cartilaginous area in the bFGF-injected calluses by day 4. The present molecular analyses demonstrate that a single injection of bFGF enhances the proliferation of chondroprogenitor cells in fracture callus, and thus contributes to the formation of a larger cartilage. However, maturation of chondrocytes and replacement of the cartilage by osseous tissue are not enhanced by exogenous bFGF, and this results in the prolonged cartilaginous callus phase. We conclude that, in the healing of closed fractures of long bones, exogenous bFGF has a capacity to enlarge the cartilaginous calluses, but not to induce more rapid healing.  相似文献   

3.
Cellular basis for age-related changes in fracture repair   总被引:5,自引:0,他引:5  
The goal of this work was to define cellular and molecular changes that occur during fracture healing as animals age. We compared the molecular, cellular, and histological progression of skeletal repair in juvenile (4 weeks old), middle-aged (6 months old), and elderly (18 months old) mice at 3, 5, 7, 10, 14, 21, 28, and 35 days post-fracture, using a non-stabilized tibia fracture model. Our histological and molecular analyses demonstrated that there was a sharp decline in fracture healing potential between juvenile and middle-aged animals, while a more subtle decrease in healing potential was apparent between middle-aged and elderly mice. By three days after fracture, chondrocytes expressing Collagen type II, and osteoblasts expressing osteocalcin, were present in calluses of juvenile, but not middle-aged or elderly, mice. At day 5 immature chondrocytes and osteoblasts were observed in calluses of middle-aged and elderly mice. While at this time, chondrocytes in juvenile mice were expressing Collagen type X (ColX) indicating that chondrocyte maturation was already underway. At day 7, chondrocytes expressing ColX were abundant in middle-aged mice while a small domain of ColX-positive chondrocytes were observed in elderly mice. Further, in juvenile and middle-aged mice, but not elderly mice, vascular invasion of the cartilage was underway by day 7. Juvenile mice had replaced nearly all of the cartilage by day 14, while cartilage was still present in the callus of middle-aged mice at day 21 and in elderly mice at day 28. In addition to these delays, histomorphometry revealed that elderly and middle-aged mice formed less bone than juveniles (p<0.001), while cartilage production was unaffected (p>0.22). Collectively, these data suggest that enhancing cell differentiation, improving osteoblast function, and accelerating endochondral ossification may significantly benefit the elderly.  相似文献   

4.
Parathyroid hormone-related peptide (PTHrP) and insulin-like growth factor I (IGF-I) are both involved in the regulation of bone and cartilage metabolisms and their interaction has been reported in osteoblasts. To investigate the interaction of PTHrP and IGF-I during fracture healing, the expression of mRNA for PTHrP and IGF-I, and receptors for PTH/PTHrP and IGF were examined during rat femoral fracture healing using an in situ hybridization method and an immunohistochemistry method, respectively. During intramembranous ossification, PTHrP mRNA, IGF-I mRNA and IGF receptors were detected in preosteoblasts, differentiated osteoblasts and osteocytes in the newly formed trabecular bone. PTH/PTHrP receptors were markedly detected in osteoblasts and osteocytes, but only barely so in preosteoblasts. During cartilaginous callus formation, PTHrP mRNA was expressed by mesenchymal cells and proliferating chondrocytes. PTH/PTHrP receptors were detected in proliferating chondrocytes and early hypertrophic chondrocytes. IGF-I mRNA and IGF receptor were co-expressed by mesenchymal cells, proliferating chondrocytes, and early hypertrophic chondrocytes. At the endochondral ossification front, osteoblasts were positive for PTHrP and IGF-I mRNA as well as their receptors. These results suggest that IGF-I is involved in cell proliferation or differentiation in mesenchymal cells, periosteal cells, osteoblasts and chondrocytes in an autocrine and/or paracrine fashion. Furthermore, PTHrP may be involved in primary callus formation presumably co-operating with IGF-I in osteoblasts and osteocytes, and by regulating chondrocyte differentiation in endochondral ossification.  相似文献   

5.
Wang FS  Yang KD  Kuo YR  Wang CJ  Sheen-Chen SM  Huang HC  Chen YJ 《BONE》2003,32(4):387-396
Extracorporeal shock wave (ESW) is a noninvasive acoustic wave, which has recently been demonstrated to promote bone repair. The actual healing mechanism triggered by ESW has not yet been identified. Bone morphogenetic proteins (BMP) have been implicated as playing an important role in bone development and fracture healing. In this study, we aimed to examine the involvement of BMP-2, BMP-3, BMP-4, and BMP-7 expression in ESW promotion of fracture healing. Rats with a 5-mm segmental femoral defect were given ESW treatment using 500 impulses at 0.16 mJ/mm(2). Femurs and calluses were subjected to immunohistochemistry and RT-PCR assay 1, 2, 4, and 8 weeks after treatment. Histological observation demonstrated that fractured femurs received ESW treatment underwent intensive mesenchymal cell aggregation, hypertrophic chondrogenesis, and endochondral/intramembrane ossification, resulting in the healing of segmental defect. Aggregated mesenchymal cells at the defect, chondrocytes at the hypertrophic cartilage, and osteoblasts adjunct to newly formed woven bone showed intensive proliferating cell nuclear antigen expression. ESW treatment significantly promoted BMP-2, BMP-3, BMP-4, and BMP-7 mRNA expression of callus as determined by RT-PCR, and BMP immunoreactivity appeared throughout the bone regeneration period. Mesenchymal cells and immature chondrocytes showed intensive BMP-2, BMP-3, and BMP-4 immunoreactivity. BMP-7 expression was evident on osteoblasts located at endochondral ossification junction. Our findings suggest that BMP play an important role in signaling ESW-activated cell proliferation and bone regeneration of segmental defect.  相似文献   

6.
Most studies have focused on the association between diabetes mellitus (DM) and impaired osseous healing, but there is also evidence that diabetes impairs cartilage formation during fracture healing. To investigate the molecular mechanisms by which diabetes affects endochondral ossification, experiments were performed in a model of rat closed fracture healing complicated with diabetes. Diabetic rats were created by a single intravenous injection of streptozotocin (STZ), while controls were treated with vehicle alone. Fractures were made 2 weeks after STZ injection. Animals were killed at 4, 7, 10, 14, 21, 28 and 42 days following fracture, and samples were subject to radiographic, histological and molecular analyses. In the DM group, a significantly smaller cartilaginous callus was formed compared with controls throughout healing, with the cartilage area being reduced rapidly after day 14. When the bone union rate was evaluated radiographically on day 28, DM calluses exhibited a lower rate than controls. However, when evaluated on day 42, both groups showed an equivalent union rate. Cellular proliferation of chondroprogenitor cells and proliferating chondrocytes in soft calluses of the DM group was significantly reduced during early stages of healing (days 4 and 7), but no longer reduced thereafter. Moreover, expression levels of collagen type II, type X and osteopontin (OPN) were constantly low in the DM group. These results show the molecular basis for diminished cartilage formation and delayed union in fracture healing of the STZ-induced diabetic rats.  相似文献   

7.
Both fibroblast growth factors-1 (acidic FGF) and -2 (basic FGF) increase the proliferation of osteoblasts and chondrocytes in vitro and FGF-2 stimulates angiogenesis and bone formation in vivo. to test their effects on rabbit tibial fracture-healing under stable and unstable mechanical conditions, 3 ug of either FGF-1 or FGF-2 was injected around rabbit tibial fractures on day 4 after fracture. Neither growth factor had a significant effect on either the size of, or the amounts of bone and cartilage in, the 10-day callus irrespective of the mechanical conditions under which the fracture was healing. the 10-day FGF-2-treated calluses were, however, more mature than FGF-1-treated calluses because the cartilage was separated from the periosteum by bone and endochondral ossification had progressed further. in conclusion, the application of FGF-1 or FGF-2 to normally healing fractures of the rabbit tibia does not have a significant effect on the rate of healing.  相似文献   

8.
9.
Calcium and its putative receptor (CaSR) control skeletal development by pacing chondrocyte differentiation and mediating osteoblast (OB) function during endochondral bone formation—an essential process recapitulated during fracture repair. Here, we delineated the role of the CaSR in mediating transition of callus chondrocytes into the OB lineage and subsequent bone formation at fracture sites and explored targeting CaSRs pharmacologically to enhance fracture repair. In chondrocytes cultured from soft calluses at a closed, unfixed fracture site, extracellular [Ca2+] and the allosteric CaSR agonist (NPS-R568) promoted terminal differentiation of resident cells and the attainment of an osteoblastic phenotype. Knockout (KO) of the Casr gene in chondrocytes lengthened the chondrogenic phase of fracture repair by increasing cell proliferation in soft calluses but retarded subsequent osteogenic activity in hard calluses. Tracing growth plate (GP) and callus chondrocytes that express Rosa26-tdTomato showed reduced chondrocyte transition into OBs (by >80%) in the spongiosa of the metaphysis and in hard calluses. In addition, KO of the Casr gene specifically in mature OBs suppressed osteogenic activity and mineralizing function in bony calluses. Importantly, in experiments using PTH (1-34) to enhance fracture healing, co-injection of NPS-R568 not only normalized the hypercalcemic side effects of intermittent PTH (1-34) treatment in mice but also produced synergistic osteoanabolic effects in calluses. These data indicate a functional role of CaSR in mediating chondrogenesis and osteogenesis in the fracture callus and the potential of CaSR agonism to facilitate fracture repair. © 2019 American Society for Bone and Mineral Research.  相似文献   

10.
Expression of dentin matrix protein 1 (DMP1) during fracture healing   总被引:1,自引:0,他引:1  
Dentin matrix protein 1 (DMP1) is one of the acidic phosphorylated extracellular matrix proteins called the SIBLING (small integrin-binding ligand, N-linked glycoproteins) family. Recent studies showed that DMP1 is expressed in the mineralized tissues and suggested that DMP1 is involved in the mineralization. We investigated the precise localization of DMP1 messenger RNA (mRNA) and protein during fracture healing. In situ hybridization demonstrated that DMP1 mRNA was strongly expressed in preosteocytes and osteocytes in the bony callus during intramembranous and endochondral ossification while DMP1 mRNA was not detected in osteoblasts and chondrocytes. During endochondral ossification, however, a low number of DMP1-expressing cells were identified in the cluster of hypertrophic chondrocytes. However, these DMP1-expressing cells were not hypertrophic and were likely to be osteoblast-lineage cells, which were embedded in the matrix of bone or cartilage, because type I collagen-expressing cells and invasion of capillary vessels were observed in the same area. Northern blot, in situ hybridization, and immunohistochemical analyses showed that DMP1 mRNA and protein expressions were increased until day 14 postfracture, when bony callus was formed, and then declined to a lower level during remodeling of the bony callus. Therefore, DMP1 is likely to play an important role in the mineralization of the bony callus.  相似文献   

11.
H Ji  G Dang  Q Ma 《中华外科杂志》1998,36(2):72-73
OBJECTIVE: To observe the effect of TGF-beta 1 in the regulation of fracture healing. METHOD: The expression of transforming growth factor-beta 1 (TGF-beta 1) in different period of fracture healing was investigated by immunohistochemistry. RESULTS: It was found that the expression of TGF-beta 1 changed in different period. The cells in the cambial layer of the periostlum showed low or negative signal in the immediate injury response period. The osteoblasts differentiated from the periosteum cells stained strongly in the intramembranous ossification period, and the differentiated chondrocytes stained most strongly in the chondrogenesis period. The hypertrophic chondrocytes showed negative signal and the osteoblasts stained strongly in the endochondral ossification period. These results suggested that the expression of TGF-beta 1 was closely related to the proliferation and differentiation state of repair cells. CONCLUSION: TGF-beta 1 is intimately involved in the control of fracture healing.  相似文献   

12.
The spatial and temporal expression domains of the fibroblast growth factor receptor genes were examined in the healing rat femur fracture by in situ hybridization. Fibroblast growth factor receptor gene expression was detected in diverse fracture tissues throughout healing. Fibroblast growth factor receptor 1 and 2 expression was present throughout fracture repair, in the early proliferating periosteal mesenchyme, in the osteoblasts during intramembranous bone formation, and in the chondrocytes and osteoblasts during endochondral bone formation. Fibroblast growth factor receptor 3 expression colocalized with fibroblast growth factor receptor 1 and 2 expression in the chondrocytes and osteoblasts beginning at 10 days of healing, and persisted throughout endochondral bone formation. Fibroblast growth factor receptor 3 recapitulated its expression in fetal skeletal development, suggesting that it has a similar function in the control of endochondral bone growth during fracture repair. Fibroblast growth factor receptor 4 expression was not observed at any time. The extensive colocalized expression of the fibroblast growth factor receptors in healing indicates that fibroblast growth factor regulation of fracture callus maturation is extensive, and accurate identification of the receptor isoforms is necessary to establish the functions of fibroblast growth factor family members in fracture repair.  相似文献   

13.
The neuropeptide galanin (GAL) has recognized physiological actions in the nervous system and other tissues, but there is no documented evidence of GAL influencing normal or pathological bone metabolism. GAL expression, however, is upregulated in central and peripheral nerves following axotomy and is known to influence neural regeneration. Thus, severance of skeletal-associated nerves during fracture could similarly increase local GAL concentrations and thereby influence fracture healing. The initial aim of this study was therefore to identify the presence of GAL in normal bone and/or fracture callus by assessing the concentration and cellular localization of GAL in intact and/or fractured rat rib, using radioimmunoassay and immunohistochemistry, respectively. Groups of Sprague-Dawley rats (13 weeks old) had their left sixth ribs surgically fractured or underwent sham surgery and then calluses and nonfractured rib samples were analyzed at 1 and 2 weeks postsurgery (n = 5-6 per group). Low (basal) concentrations of GAL were detected in control ribs, whereas at 1 and 2 weeks postfracture, callus samples contained markedly increased levels of peptide ( approximately 32- and 18-fold increase, respectively, relative to controls; P < 0.01), revealing a strong upregulation during bone healing. Plasma GAL concentrations were also increased at 2 weeks postfracture (P < 0.005). In normal (nonfractured) rib, minimal levels of GAL-like immunoreactivity (LI) were present in cortical bone, periosteum, endosteum, and surrounding skeletal muscle. In costal cartilage plates, intense GAL-LI was present in all chondrocytes of the hypertrophic zone and in a population of chondrocytes in the reserve zone. GAL-LI was not present, however, in chondrocytes in the proliferative zone of costal cartilage or skeletal muscle fibers. In fracture callus, levels of GAL-LI were moderate to intense in osteoprogenitor cells and osteoblasts, in some chondrocytes, and in cartilaginous, osseous, and periosteal matrices. Subsequent studies revealed the presence of galanin receptor-1-like immunoreactivity (GALR1-LI) in most cell types shown to contain GAL-LI, although the distribution of GALR1-LI was more extensive in reserve zone chondrocytes than that of GAL-LI; and GALR1-LI also appeared in late proliferative zone chondrocytes of costal cartilage. In summary, GAL concentrations were significantly increased in fracture callus and plasma of rats that underwent rib fracture. In addition, GAL- and GALR1-LI was also detected in specific cells and structures within costal cartilage, bone, and fracture callus. These results strongly implicate GAL in aspects of cartilage growth plate physiology and fracture repair, possibly acting in an autocrine/paracrine fashion via GALR1.  相似文献   

14.
Localization and expression of connective tissue growth factor/hypertrophic chondrocyte-specific gene product 24 (CTGF/Hcs24) during fracture healing in mouse ribs were investigated. In situ hybridization demonstrated that CTGF/Hcs24 mRNA was remarkably expressed, especially in hypertrophic chondrocytes and proliferating chondrocytes, in the regions of regenerating cartilage on days 8 and 14 after fracture. CTGF/Hcs24 mRNA was also expressed in proliferating periosteal cells in the vicinity of the fracture sites on days 2 and 8, and in cells in fibrous tissue around the callus on day 8. Northern blot analysis showed that expression of CTGF/Hcs24 mRNA was 3.9 times higher on day 2 of fracture healing than that on day 0. On day 8, it reached a peak of 8.6 times higher than that on day 0. It then declined to a lower level. Immunostaining showed that CTGF/Hcs24 was localized in hypertrophic chondrocytes and proliferating chondrocytes in the regions of regenerating cartilage, and in active osteoblasts in the regions of intramembranous ossification. Although CTGF/Hcs24 was abundant in the proliferating and differentiating cells (on days 8 and 14), immunostaining decreased as the cells differentiated to form bone (on day 20). CTGF/Hcs24 was also detected in cells in fibrous tissue, vascular endothelial cells in the callus, and periosteal cells around the fracture sites. These results suggest that CTGF/Hcs24 plays some role in fracture healing.  相似文献   

15.
Chondromodulin-I (Chm-I) is a glycoprotein that stimulates the growth of chondrocytes and inhibits angiogenesis in vitro. Mice lacking the Chm1 gene show abnormal bone metabolism and pathological angiogenesis in cardiac valves in the mature stage although they develop normally without aberrations in endochondral bone formation during embryogenesis or in cartilage development during growth. These findings indicate that Chm-I is critical under conditions of stress such as bone repair through endochondral ossification of a fracture callus. We carried out the present study to examine the expression and role of Chm-I in bone repair using a stabilized tibial fracture model, and compared fracture healing in Chm1 knockout (Chm1(-/-)) mice with that in wild-type mice. Chm-I mRNA and protein localized in the external cartilaginous callus in the reparative phase of fracture healing. Radiological examination showed a delayed union in Chm1(-/-) mice although the fracture site was covered with both external and internal calluses. Chm1 null mutation reduced external cartilaginous callus formation as judged by marked decrease of type X collagen alpha 1 (Col10a1) expression and the total amount of cartilage matrix. Interestingly, the majority of chondrocytes in the periosteal callus failed to differentiate into mature chondrocytes in Chm1(-/-) mice, while the hypertrophic maturation of chondrocytes between the cortices was not affected. These results suggest that Chm-I is involved in hypertrophic maturation of periosteal chondrocytes. Although a direct effect of Chm-I on bones is still unclear, bony callus formation was increased while external cartilaginous callus decreased in Chm1(-/-) mice. We conclude that in the absence of Chm1, predominant primary bone healing occurs due to an indirect effect induced by reduction of cartilaginous callus rather than to a direct effect on osteogenic function, resulting in a delayed union.  相似文献   

16.
Calpain refers to Ca2+-dependent neutral cysteine proteinase, which originally was thought to be an intracellular proteinase but recently has been shown to function extracellularly as well. This report describes the immunohistochemical demonstration of calpain and biochemical changes in the amount of calpain during fracture healing in rats. The tibiae of 6-week-old Wistar rats were fractured, and calluses were obtained 5–28 days after fracture. A frozen section of the fracture callus was stained by the immunoperoxidase method with use of polyclonal antibodies of calpains I and II. Positive staining was noted with the anti-calpain II antibody in the perivascular areas, chondrocytes, and cartilage matrix in calluses at 5, 7, and 10 days. Less intense staining was seen in older calluses. The caseinolytic activity of calpain II reached its maximum on the 5th day, was high on the 7th and 10th days, and decreased rapidly thereafter. The quantity of calpain II was dependent on the process of fracture healing. It was concluded that calpain was working as one of the matrix proteinases in fracture callus.  相似文献   

17.
目的初步探索骨松安促进骨质疏松性骨折愈合的机制。方法建立骨质疏松性骨折大鼠模型,采用骨松安进行治疗,分别于7、14、21 d取出骨折端骨痂,通过HE染色观察骨痂生长情况,采用免疫组化、RT-qPCR检测Runx 2、Osterix的表达。结果 HE染色结果显示,骨松安治疗可在早期促进骨质疏松性骨折大鼠骨折端软骨细胞增生、成骨细胞成熟分化及编织骨形成。免疫组化、RT-qPCR结果显示,骨质疏松性骨折组大鼠Runx 2与Osterix的表达一直处于较低水平,在骨松安持续治疗下,Runx 2与Osterix的表达得到明显改善。结论骨松安可激活Runx 2/Osterix途径,加速前成骨细胞向成骨细胞分化,促进骨质疏松性骨折大鼠的骨折愈合。  相似文献   

18.
目的 阐明成纤维细胞生长因子受体2(FGFR2)在成年小鼠骨折愈合过程中的表达模式. 方法 制备小鼠胫骨不稳定骨折模型,分别于骨折后3、5、7、10、14和21 d 6个时相点对小鼠的骨痂摄X线片,行HE染色及FGFR2、骨钙蛋白、Ⅱ型胶原、X型胶原的原位杂交检测,明确FGFR2在成骨细胞和软骨细胞中的表达变化. 结果 骨折后3~5 d,FGFR2与骨钙蛋白在骨折处骨膜下成骨细胞中共表达;在骨折后7~14 d,FGFR2与X型胶原在软骨痂肥大前软骨细胞和肥大软骨细胞中共表达. 结论 FGFR2参与了骨折愈合过程,并且可能是潜在的调节骨折愈合的靶基因.  相似文献   

19.
李长有  原银栋  宋今丹 《中华实验外科杂志》2005,22(11):1385-1386,i0006
目的探讨血管内皮生长因子(VEGF)在骨折愈合中的自分泌作用。方法利用鼠股骨闭合性骨折模型,应用组织学和逆转录聚合酶链反应(RT-PCR)方法,观察骨折不同的愈合修复阶段中骨痂的组织学变化,检测各种相应骨痂组织中VEGF及其受体VEGFR1(Flt-1)和VEG-FR2(KDR/Flk-1)的mRNA的表达。结果骨折愈合是一个高度有序的组织学变化过程,骨痂内的膜内化骨,软骨形成,软骨内化骨等过程可同时或连续出现。vEGF(251bp)及受体Flt-1(272bp)和KDR/Flk-1(252bp)在骨折后第7、14天的软骨性骨痂(软骨组织)和骨性骨痂(小梁骨-膜内化骨和软骨内化骨)中均同时清晰表达。表达信号均匀,强度较大。结论骨折愈合过程中的软骨性骨痂和骨性骨痂中的软骨-骨细胞系统共表达VEGF及其两种受体,提示VEGF自分泌作用参与骨折愈合过程。  相似文献   

20.
As new insights into the complexities of endochondral fracture repair emerge, the temporal role of osteoclast activity remains ambiguous. With numerous antiresorptive agents available to treat bone disease, understanding their impact on bone repair is vital. Further, in light of recent work suggesting osteoclast activity may not be necessary during early endochondral fracture union, we hypothesize instead a pivotal role of matrix metalloproteinase (MMP) secreting cells in driving this process. Although the role of MMPs in fracture healing has been examined, no directly comparative experiments exist. We examined a number of antiresorptive treatments to either block osteoclast activity, including the potent bisphosphonates zoledronic acid (ZA) and clodronate (CLOD), which work via differing mechanisms, or antagonize osteoclastogenesis with recombinant OPG (HuOPG‐Fc), comparing these directly to an inhibitor of MMP activity (MMI270). Endochondral ossification to union occurred normally in all antiresorptive groups. In contrast, MMP inhibition greatly impaired endochondral union, significantly delaying cartilage callus removal. MMP inhibition also produced smaller, denser hard calluses. Hard callus remodeling was, as expected, delayed with ZA, CLOD, and OPG treatment at 4 and 6 weeks, resulting in larger, more mineralized calluses at 6 weeks. As a result of reduced hard callus turnover, bone formation was reduced with antiresorptive agents at these time points. These results confirm that the achievement of endochondral fracture union occurs independently of osteoclast activity. Alternatively, MMP secretion by invading cells is obligatory to endochondral union. This study provides new insight into cellular contributions to bone repair and may abate concerns regarding antiresorptive therapies impeding initial fracture union.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号