首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This article presents our studies on the adenoviral transduction efficiency, level of transgene expression, cell cycle status, and multilineage reconstitution ability of human CD34+ hematopoietic cells transduced under proliferating and survival growth conditions. Bone marrow and umbilical cord blood CD34+ cells were cultured in serum-free medium under survival conditions with thrombopoietin (Tpo) alone, or under proliferating conditions with Tpo, c-Kit ligand (KL), and Flt3 ligand (FL). Adenoviral vectors carrying the enhanced green fluorescent protein (EGFP) gene under the control of the PGK-1 promoter were used to transduce CD34+ cells. Approximately 10% of CD34+ cells were EGFP+ under both culture conditions. In contrast, up to 50% of CD34+CD38- cells were EGFP+, whereas a maximum of 8% of CD34+CD38(high) cells were EGFP+ (p < 0.001). Both colony-forming unit cells (CFU-C) and 5-week long-term culture-initiating cells (LTC-ICs) were efficiently transduced. Under survival conditions, a substantial fraction of transduced CD34+ cells remained quiescent. The nondividing CD34+EGFP+ cells contained LTC-ICs capable of reconstituting longterm culture for as long as 10 weeks. CD34+EGFP+ cells also retained the ability to engraft and multilineage-reconstitute NOD/SCID mice. These observations demonstrate that primitive human hematopoietic progenitor cells can be efficiently transduced by adenoviral vectors.  相似文献   

2.
The efficient transfer and sustained expression of a transgene in human hematopoietic cells with in vivo repopulating potential would provide a significant advancement in the development of protocols for the treatment of hematopoietic diseases. Recent advances in the ability to purify and culture hematopoietic cells with the CD34+CD38- phenotype and with in vivo repopulating potential from human umbilical cord blood provide a direct means of testing the ability of transfer vectors to transduce these cells. Here we demonstrate the efficient transduction and expression of enhanced green fluorescent protein (EGFP) in human umbilical cord-derived CD34+CD38- cells, without prestimulation, using a lentivirus-based gene transfer system. Transduced CD34+CD38- cells cultured in serum-free medium supplemented with SCF, Flt-3, IL-3, and IL-6 maintained their surface phenotype for 5 days and expressed readily detectable levels of the transgene. The average transduction efficiency of the CD34+CD38- cells was 59 +/- 7% as determined by flow cytometry. Erythroid and myeloid colonies derived from transduced CD34+CD38- cells were EGFP positive at a high frequency (66 +/- 9%). In contrast, a murine leukemia virus-based vector transduced the CD34+CD38- cells at a low frequency (<4%). These results demonstrate the utility of lentiviral-based gene transfer vectors in the transduction of primitive human hematopoietic CD34+CD38- cells.  相似文献   

3.
One factor limiting the ability to modify human repopulating hematopoietic cells genetically with retroviral vectors is the relatively low expression of the cognate viral receptor. We have tested sequential transduction of human hematopoietic cells with an adenoviral vector encoding the ecotropic retroviral receptor followed by transduction with an ecotropic retroviral vector. Adenoviral transduction of K562 erythroleukemia cells was highly efficiently with >95% of cells expressing the ecotropic receptor at a multiplicity of infection (MOI) of 103with a correspondingly high transduction with a retroviral vector. Ecotropic receptor expression in CD34+ cells following transduction with adenoviral vectors was increased by at least two-fold (from 20 to 48%) by replacing the RSV promoter with the CMV E1a promoter, resulting in a parallel increase in retroviral transduction efficiency. Replacing the head portion of the fiber protein in conventional adenoviral vectors (serotype 5) with the corresponding portion from an adenoviral 3 serotype resulted in ecotropic receptor expression in 60% of CD34+ cells at an MOI of 104 and a retroviral transduction of 60% of hematopoietic clonogenic progenitors. The sequential transduction strategy also resulted in efficient transduction of the primitive CD34+CD38- subset suggesting that it may hold promise for genetic modification of human hematopoietic stem cells.  相似文献   

4.
Recombinant adeno-associated viral (rAAV) vectors have been evaluated for their ability to transduce primitive hematopoietic cells. Early studies documented rAAV-mediated gene expression during progenitor derived colony formation in vitro, but studies examining genome integration and long-term gene expression in hematopoietic cells have yielded conflicting results. Such studies were performed with crude vector preparations. Using improved methodology, we have generated high titer, biologically active preparations of rAAV free of wild-type AAV (less than 1/107particles) and adenovirus. Transduction of CD34+ cells from umbilical cord blood was evaluated with a bicistronic rAAV vector encoding the green fluorescent protein (GFP) and a trimetrexate resistant variant of dihydrofolate reductase (DHFR). Freshly isolated, quiescent CD34+ cells were resistant to transduction (less than 4%), but transduction increased to 23 +/- 2% after 2 days of cytokine stimulation and was further augmented by addition of tumor necrosis factor alpha (51 +/- 4%) at a multiplicity of infection of 106. rAAV-mediated gene expression was transient in that progenitor derived colony formation was inhibited by trimetrexate. Primitive CD34+ and CD34+, CD38- subsets were sequentially transduced with a rAAV vector encoding the murine ecotropic receptor followed by transduction with an ecotropic retroviral vector encoding GFP and DHFR. Under optimal conditions 41 +/- 7% of CD34+ progenitors and 21 +/- 6% of CD34+, CD38- progenitors became trimetrexate resistant. These results document that highly purified rAAV transduce primitive human hematopoietic cells efficiently but gene expression appears to be transient. Gene Therapy (2000) 7, 183-195.  相似文献   

5.
目的 观察经Tpo、IL 11基因修饰的基质细胞对脐血CD3 4 + CD3 8-细胞体外扩增的影响。方法 用载有Tpo、IL 11基因的重组逆转录病毒感染成纤维样基质细胞HFCL ,通过Northernblot法检测基因修饰的HFCL细胞Tpo、IL 11基因的表达。以未经基因修饰的HFCL细胞作为对照 ,将脐血CD3 4 + 造血干 /祖细胞在这种基因修饰的HFCL细胞支持下 ,进行 7d体外扩增后 ,用锥虫蓝拒染法计数活细胞总数 ,并用流式细胞仪分析扩增细胞中CD3 4 + 细胞以及CD3 4 + CD3 8-细胞的比例。结果 在Tpo基因修饰的HFCL细胞、IL 11基因修饰的HFCL细胞和Tpo +IL 11基因共同修饰的HFCL细胞的支持下 ,扩增后CD3 4 + CD3 8-早期造血祖细胞的比例分别为 (1.8± 0 .2 4 ) %、(1.6 2± 0 .2 3) %、(2 .4 5±0 2 8) % ,细胞扩增倍数为 4 .2倍、3.6倍、6 .9倍 ,高于对照组的 (0 .80± 0 .2 3) %和 1.5倍 ,同时扩增细胞总数和CD3 4 + 细胞比例亦高于未经基因修饰的HFCL细胞所支持的扩增体系。结论 Tpo、IL 11基因修饰的基质细胞可有效促进脐血CD3 4 + 造血干 /祖细胞体外扩增 ,同时能有效维持扩增体系中的CD3 4 + CD3 8-细胞以及促进其扩增。  相似文献   

6.
We have previously demonstrated recombinant adeno-associated viral (rAAV) transduction of human CD34(+) hematopoietic stem cells (HSCs) capable of serial engraftment in vivo. Here we evaluated the capacity of rAAV2 to mediate gene transfer into nondividing, quiescent, primitive CD34(+) cells subdivided on the basis of metabolic, mitotic, and phenotypic properties. Results revealed that CD34(+)CD38() marrow cells are the most quiescent, exist primarily in G(0) at isolation and are the only population to remain nondividing during the entire exposure to free rAAV. Despite significant differences in the extended clonogenic capacities of CD34(+) subsets in stromal cultures, the frequency of rAAV marking of colonies derived from primitive progenitors was similar in all three populations, suggesting that both primitive and more differentiated progenitors were initially transduced at equal levels. After transduction, episomal and integrated rAAV genomes were detected in all CD34(+) subsets. However, the more quiescent cells displayed higher levels of integrated rAAV than did rapidly dividing cells. Importantly, stable long-term integration was observed only in the most primitive, quiescent CD34(+)CD38(-) subset, indicating that this HSC compartment comprises the preferred substrate for stable rAAV2 transduction. Previously described rate limitations to transgene expression were observed in transduced CD34(+) cells and could be overcome by tyrphostin pretreatment, which resulted in augmented second-strand synthesis. These results represent the first demonstration of rAAV-mediated gene transfer to primitive, quiescent human CD34(+)CD38(-) stem cells and reveal that nondividing CD34(+)CD38(-) HSCs are the optimal CD34(+) targets for rAAV transduction.  相似文献   

7.
Adenoviral gene transfer to hematopoietic stem cells (HSCs)/progenitors would provide a new approach to the treatment of hematopoietic diseases and study of the hematopoietic system. We have previously reported that an adenovirus (Ad) vector composed of whole Ad serotype 35 (Ad35), which belongs to subgroup B, shows efficient gene transfer into human bone marrow CD34+ cells. However, Ad35 vector-mediated transduction into human HSCs/progenitors has not yet been fully optimized. In the present study, we have systematically examined promoter activity in the context of Ad35 vectors in human bone marrow CD34+ cells and primitive CD34+ subsets to optimize the transduction efficiency in human hematopoietic stem/progenitor cells. In the first of the transduction experiments, the improved in vitro ligation method was applied to Ad35 vector construction to allow for simple and efficient production of an E1/E3-deleted Ad35 vector. Using this method, we constructed a series of Ad35 vectors encoding the enhanced green fluorescence protein (GFP) under the control of a variety of strong viral and cellular promoters. Of the six types of promoters tested, significantly higher transduction efficiencies were achieved with the human elongation factor 1alpha promoter (EF1alpha promoter), the human cytomegalovirus (CMV) immediate-early 1 gene enhancer/beta-actin promoter with beta-actin intron (CA promoter), and the CMV promoter/enhancer with the largest intron of CMV (intron A) (CMVi promoter) in the human CD34+ cells and the immature subsets (CD34+ CD38(low/-) and CD34+ AC133+ subsets). In particular, the CA promoter was found to allow for the highest transduction efficiencies in both the whole human CD34+ cells and the immature hematopoietic subsets. Furthermore, the CA promoter-mediated GFP-expressing cells differentiated into progenitor cells of all lineages. These results indicate the construction of an optimized Ad35 vector backbone for efficient transduction into HSCs/progenitors.  相似文献   

8.
A novel murine stromal cell line, HESS-M28, was established, which supports the expansion of human CD34+CD38- cells more than 300-fold in vitro in the presence of human IL-3 and SCF. These cells were used in an attempt to evaluate cis-acting elements of retroviral vectors in human primitive hematopoietic cells. Cord blood cells were cultured on top of the mixed cell layers of the stromal cell line, HESS-M28, and retroviral vector-producing cells. The FMEV-type vector SF/Lyt contained the spleen focus-forming virus U3 and the MESV primer-binding site (PBS), while MO3/Lyt contained the U3 region and PBS from Mo-MuLV. After transduction by the FMEV-type and Mo-MuLV-based vectors, expression of the marker gene murine CD8 (mCD8) was examined in CD34-, CD34+, and CD34+CD38- cells. In CD34+ and CD34+CD38- cells, expression of mCD8 was higher with the FMEV-type vector, SF/Lyt, compared with the cells transduced by the Mo-MuLV-based vector MO3/Lyt, although the expression was comparable in CD34- cells. Expression of marker genes was also confirmed in long-term culture-initiating cells (LTC-ICs) and SCID-repopulating cells (SRCs).  相似文献   

9.
To optimize a gene transfer system for hematopoietic stem cell gene therapy of patients with mucopolysaccharidosis (MPS) type I, 10 retroviral vectors were constructed to express the human alpha-L-iduronidase (IDUA) cDNA. These vectors were designed to evaluate the potential effects of specific promoters, the addition of selectable markers, and the use of multiple promoters versus an internal ribosome entry site for expression of IDUA and selectable maker genes. The effect of vector design was investigated in primary patient fibroblasts (F(MPS)) or murine fibroblast cell lines; while overall comparison of transgene expression was determined in patients' peripheral blood lymphocytes (PBL(MPS)) and CD34+ progenitors (PBPC(MPS)). We observed that the human PGK promoter introduced the highest IDUA activity per 1% relative transgene frequency in F(MPS). Use of the same promoter to separately regulate both the therapeutic gene and a drug-resistance gene resulted in decreased expression of the unselected gene. Co-selection using bicistronic vectors not only increased the number of transductants, but also elevated transgene expression under selective pressure in transgene-positive progenitors. Bicistronic vector LP1CD overcame down-regulation and practically introduced the highest IDUA level in unselected PBL(MPS) and an intermediate level in PBPC(MPS). These studies provide a better understanding of factors contributing to efficient gene expression in hematopoietic cells.  相似文献   

10.
Umbilical cord blood (CB) from the early gestational human fetus is recognized as a rich source of hematopoietic stem cells. To examine the value of fetal CB for gene therapy of inborn immunohematopoietic disorders, we tested the feasibility of genetic modification of CD34(+) cells from CB at weeks 24 to 34 of pregnancy, using lentiviral vector-mediated transfer of the green fluorescent protein (GFP) gene. The transduction rate of CD34(+) cells was 42 +/- 9%, resulting in GFP expression in 23 +/- 4% of colonies derived from colony-forming units (CFUs) and 11 +/- 1% from primitive long-term culture-initiating cells (LTC-ICs). Cell cycle analysis demonstrated transduction and GFP expression in cells in the G(0) phase, which contains immature hematopoietic progenitors. Transduced fetal CD34(+) cells could be expanded 1000-fold in long-term cultures supplemented with megakaryocyte growth and development factor along with Flt-3 ligand. At week 10, expression of GFP was observed in 40.5 +/- 11.7% of CFU-derived colonies. While prestimulation of CD34(+) cells with cytokines prior to transduction increased the efficiency of GFP transfer 2- to 3-fold, long-term maintenance of GFP-expressing CFUs occurred only in the absence of prestimulation. The GFP gene was found integrated into the genomic DNA of 35% of LTC-IC-derived colonies initiated at week 10, but GFP expression was not detectable, suggesting downregulation of transgene activity during the extended culture period. These results indicate that human fetal CB progenitors are amenable to genetic modification by lentiviral vectors and may serve as a target for gene therapy of hematopoietic disorders by prenatal autologous transplantation.  相似文献   

11.
Human hematopoietic cells with in vivo repopulating potential hold much promise as a target for corrective gene transfer for numerous inherited or acquired hematopoietic disorders. Here we demonstrate long-term hematopoietic reconstitution of nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice with human CD34(+) cells transduced by an HIV-1-based self-inactivating (SIN) vector encoding the enhanced green fluorescent protein (EGFP). Human umbilical cord CD34(+) cells were transduced (up to 76%) at a low multiplicity of infection (MOI of 5) in the absence of cytokine prestimulation. Introduction of transduced hCD34(+) cells into irradiated recipients resulted in multilineage engraftment and stable transgene expression for 18 weeks posttransplantation. Bone marrow from transplanted mice contained up to 50% hCD45(+) cells and up to 63% hCD45(+)/EGFP(+) cells. Analysis of extramedullar splenic reconstitution showed up to 13% hCD45(+) cells and up to 41% hCD45(+)/EGFP(+) cells. Analysis of human progenitor cells isolated from bone marrow of recipient animals showed equivalent percentages of EGFP(+) colony-forming cells (CFCs) by fluorescence microscopy and by PCR analysis of provirus sequences, indicating minimal transgene silencing in vivo. These findings demonstrate the utility of lentivirus-based SIN vectors for hematopoietic stem cell gene transfer and provide strong support for their future clinical evaluation.  相似文献   

12.
The methods available to efficiently transduce human CD34(+) hematopoietic stem cells (HSCs) derived from mobilized peripheral blood, such that they fully retain their engraftment potential and maintain high levels of transgene expression in vivo, have been unsatisfactory. The current murine retrovirus-based gene transfer systems require dividing cells for efficient transduction, and therefore the target HSCs must be activated ex vivo by cytokines to cycle, which may limit their engrafting ability. Lentivirus-based gene transfer systems do not require cell division and, thus, may allow for efficient gene transfer to human HSCs in the absence of any ex vivo cytokine stimulation. We constructed human immunodeficiency virus (HIV)-based vectors and compared them in vitro and in vivo with MuLV-based vectors in their ability to transduce unstimulated human CD34(+) HSCs isolated from mobilized peripheral blood. Both sets of vectors contained the marker gene that expresses the enhanced green fluorescent protein (EGFP) for evaluating transduction efficiency and were pseudotyped with either vesicular stomatitis virus glycoprotein (VSV-G) or the amphotropic murine leukemia virus envelope (A-MULV Env). The VSV-G-pseudotyped HIV-based vectors containing an internal mouse phosphoglycerate kinase promoter (PGK) were able to transduce up to 48% of the unstimulated CD34(+) cells as measured by EGFP expression. When these cells were injected into the human fetal thymus implants of irradiated SCID-hu Thy/Liv mice, up to 18% expressed EGFP after 8 weeks in vivo. In contrast, the MULV-based vectors were effective at transducing HSCs only in the presence of cytokines. Our results demonstrate that the improved HIV-based gene transfer system can effectively transduce unstimulated human CD34(+) HSCs, which can then differentiate into thymocytes and provide long-term transgene expression in vivo.  相似文献   

13.
Introduction of foreign genes into human CD34(+) hematopoietic precursor cells offers a means to correct inborn errors or to protect human stem cells from chemotherapeutic damage. Electroporation is a non-chemical, nonviral, highly reproducible means to introduce foreign genes into mammalian cells that has been used primarily for rapidly dividing cells. CD34(+) cells isolated from mobilized peripheral blood of patients were cultured for 48 h in serum-free culture medium supplemented with Flt-3 ligand, stem cell factor and thrombopoietin. Cell cycle analysis showed an increase in % S-phase from 2% on day 0 to 28% on day 2 without significant loss of mean fluorescence intensity (MFI). Optimal electroporation conditions for CD34(+) cells were 550 V/cm, 38 ms, 30 microg DNA/500 microl at cell densities between 0.2 x 10(6) and 10 x 10(6) cells/ml resulting in transient EGFP gene expression in 21% (+/- 1%) of CD34(+) precursor cells, as determined by flow cytometry 48 h after electroporation. The more primitive cells were also found to be EGFP(+) as determined by subset analysis using Thy1, CD38, AC133 and c-kit conjugated monoclonal antibodies. Methylcellulose assays on electroporated CD34(+) cells yielded 20% (+/- 7%) EGFP(+) colonies (CFU-GM, BFU-E and CFU-mix) and 22% (+/- 5%) EGFP(+) long-term colony-initiating cells (LTC-IC). The reporter gene was found to be integrated into the LTC-IC genomic DNA as determined by inverse PCR and DNA sequencing. These results suggest that electroporation has the potential to effectively and stably deliver exogenous genes into human hematopoietic precursor cells.  相似文献   

14.
Gene transfer into fetal baboon hematopoietic progenitor cells   总被引:3,自引:0,他引:3  
We studied hematopoietic progenitors from fetal baboon blood, marrow, and liver at four time points (125, 140, 160, and 175 days) during the third trimester (gestation approximately 180 days) to determine if fetal baboons might be an appropriate model for in utero gene therapy of hematopoietic stem cells (HSCs). Cells were studied for expression of CD34, CD33, CD38, and HLA-DR, for progenitor content in colony-forming cell assays, and for susceptibility of CD34+ progenitors to retrovirus-mediated gene transfer. Throughout the third trimester, the frequency of CD34+ progenitors in blood and marrow appears to remain unchanged at approximately 0.6 and 5.0%, respectively. In liver, progenitors progressively decrease to undetectable levels by day 175. The proportion of fetal baboon bone marrow and liver CD34+ cells expressing CD38 and HLA-DR appears to increase with increasing fetal age, similar to changes reported for human cord blood CD34+ cells. In fetal baboon blood the proportion of CD34+ cells expressing CD33 appears to decrease with increasing gestational age, also similar to changes reported for human cord blood cells. Progenitors from human cord blood and baboon fetal tissues were similarly susceptible to transduction by the gibbon ape leukemia pseudotyped retroviral vector LAPSN(PG13) containing the genes for human placental alkaline phosphatase (AP) and the bacterial neomycin phosphotransferase (neo). Fetal baboon and human hematopoietic progenitor cells undergo similar phenotypic changes during the third trimester of fetal development and are similarly susceptible to retrovirus-mediated gene transfer. The fetal baboon may be a model in which approaches to mobilization and gene transfer into fetal HSCs can be studied.  相似文献   

15.
To clarify the hematopoietic potential of various sub-classes of human hematopoietic progenitor cells, we used a multicolor staining protocol in conjunction with anti-CD34 and -CD38 McAb. We characterized two cell fractions in CD34 cells with or without CD38 expression. A clonogenic assay showed that most CFC were present in CD34 CD38 population. Morphologic analysis showed that blast-like cells were more enriched in the CD34 CD38 fraction. To clarify the biologic differences between both fractions, we examined the more primitive progenitor cell function by assessing long-term culture-initiating cells (LTC-IC) on the stromal cells. At the first two weeks, more CF.C harvested from the culture in the fractions initiated with both populations. However, more LTC-IC were present during weeks 4 to 12 in the CD34 CD38- population. These results indicate the primitive progenitors are more enriched in CD34 CD38 population than in CD34 CD38 cells.  相似文献   

16.
In this article, we report that the human fetal thymus contains CD34bright cells (< 0.01% of total thymocytes) with a phenotype that resembles that of multipotent hematopoietic progenitors in the fetal bone marrow. CD34bright thymocytes were CD33-/dull and were negative for CD38, CD2, and CD5 as well as for the lineage markers CD3, CD4, and CD8 (T cells), CD19 and CD20 (B cells), CD56 (NK cells), glycophorin (erythrocytes), and CD14 (monocytes). In addition, total CD34+ lineage negative (lin-) thymocytes contained a low number of primitive myeloid progenitor cells, thus suggesting that the different hematopoietic lineages present in the thymus may be derived from primitive hematopoietic progenitor cells seeding the thymus. To investigate whether the thymus is permissive for the development of non-T cells, human fetal organ culture (FTOC) assays were performed by microinjecting sorted CD34+lin- fetal liver cells into fragments of HLA- mismatched fetal thymus. Sequential phenotypic analysis of the FTOC- derived progeny of CD34+lin- cells indicated that the differentiation into T cells was preceded by a wave of myeloid differentiation into CD14+CD11b+CD4dull cells. Donor-derived B cells (CD19+CD20+) were also generated, which produced immunoglobulins (IgG and IgM) when cultured under appropriate conditions, as well as functional CD56+CD3- NK cells, which efficiently killed K562 target cells in cytotoxicity assays. These results demonstrate that the microinjection of fetal liver hematopoietic progenitors into fetal thymic organ fragments results in multilineage differentiation in vitro.  相似文献   

17.
Our goal is to produce ex vivo-expanded human megakaryocytes (MK) cells from peripheral blood progenitor cell (PBPC) harvests for use in supplementing conventional autografts. In this paper we show the megakaryocytopoietic productivity of small-scale in vitro serum-free cultures of human CD34+ cells containing MK growth and development factor (MGDF) and stem cell factor (Kit ligand; SCF) +/- granulocyte colony-stimulating factor (G-CSF). Cultures were characterized after 3, 6, 9, and 13 days by flow cytometry and clonogenic assays. CD34+ cells expanded 5.2- and 3.4-fold, and produced 2.2 and 2.4 CD34+/41(+) cells per seeded CD34+ cell after 6 and 9 days in culture, respectively. None were detected at day 13. CD41+ cells expanded exponentially over 13 days. Colony-forming unit-megakaryocyte (CFU-MK) also expanded exponentially, but the proportion of the most primitive CFU-MK dropped from 45% to 1.5% and to <1% after 6 and 9 days, respectively. G-CSF increased total cell expansion, but decreased CD41+ frequency, yielding no gain in MK production. We also found that PB CD34+ cells cultured for 3-6 days are richer in primitive MK progenitors, while those cultured for 9-13 days have greater numbers of more differentiated MKs. Overall, the combination of MGDF+SCF proved sufficient for expanding CD34+/CD41+ cells. As the stage of ex vivo MK differentiation most conducive to optimal platelet production in vivo is not known, we are planning a clinical trial to determine the efficacy of ex vivo-expanded MKs on platelet recovery in relation to MK maturity.  相似文献   

18.
Kume A  Xu R  Ueda Y  Urabe M  Ozawa K 《Gene therapy》2000,7(14):1193-1199
Hematopoietic stem cells (HSCs) are attractive targets for gene therapy, but current gene transfer methodologies are inadequate for efficient HSC transduction and perpetual transgene expression. To improve gene transfer vectors and transduction protocols, it is vital to establish a system to evaluate transgene expression and the long-term behavior of transduced cells in vivo. For this purpose, we constructed a bicistronic retrovirus encoding the human CD24 (as the first cistron) and the enhanced green fluorescent protein (EGFP; as the second cistron). Murine bone marrow cells were transduced with this vector and the transgene expression was monitored along with hematopoietic reconstitution. Stable expression of CD24 and EGFP was demonstrated in the long-term repopulating cells for at least 6 months, and multi-parameter flow cytometry illustrated expression of both markers in all the lymphohematopoietic lineages examined (B and T lymphoid, erythroid and myeloid). Sustained expression was also shown in the secondary transplants for 6 months, suggesting that self-renewing HSCs were transduced by this vector. Overall, EGFP-tagged bicistronic retroviruses would provide powerful tools for detailed in vivo analysis of transduced hematopoietic cells, such as transgene expression in conjunction with lineage differentiation. Gene Therapy (2000) 7, 1193-1199.  相似文献   

19.
The efficient genetic modification of CD34+ cell-derived dendritic cells (DC) will provide a significant advancement towards the development of immunotherapy protocols for cancer, autoimmune disorders and infectious diseases. Recent reports have described the transduction of CD34+ cells via retrovirus- and lentivirus-based gene transfer vectors and subsequent differentiation into functional DC. Since there is significant apprehension regarding the clinical uses of HIV-based vectors, in this report, we compare a murine leukemia virus (MLV)- and a human immunodeficiency virus (HIV)-based bicistronic vector for gene transfer into human CD34+ cells and subsequent differentiation into mature DC. Each vector expressed both EGFP and the dominant selectable marker DHFR(L22Y) allowing for the enrichment of marked cells in the presence of the antifolate drug trimetrexate (TMTX). Both MLV-based and HIV-based vectors efficiently transduced cytokine mobilized human peripheral blood CD34+ cells. However, in vitro expansion and differentiation in the presence of GM-CSF, TNF-alpha, Flt-3L, SCF and IL-4 resulted in a reduction in the percentage of DC expressing the transgene. Selection with TMTX during differentiation increased the percentage of marked DC, resulting in up to 79% (MLV vector) and up to 94% (lentivirus-vector) transduced cells expressing EGFP without loss of DC phenotype. Thus, MLV-based vectors and in vitro selection of transduced human DC show great promise for immunotherapy protocols.  相似文献   

20.
Human hematopoietic stem cells (HSCs) are poorly transduced by vectors based on adenovirus serotype 5 (Ad5). This is primarily due to the paucity of the coxsackievirus-Ad receptor on these cells. In an attempt to change the tropism of Ad5, we constructed a series of chimeric E1-deleted Ad5 vectors in which the shaft and knob of the capsid fibers were exchanged with those of other Ad serotypes. In all these vectors, the Ad E1 region was replaced by an expression cassette containing the cytomegalovirus immediate-early promoter and the gene for enhanced green fluorescent protein (GFP). Experiments performed in vitro showed an efficient transduction of umbilical cord blood (UCB) monocytes, granulocytes, and their precursors as well as the undifferentiated CD34(+) CD33(-) CD38(-) CD71(-) cells by Ad5 vectors carrying Ad subgroup B-specific fiber chimeras (Ad5FBs). In the latter subpopulation, which comprises less than 1% of the CD34(+) cells and is highly enriched with cells repopulating immunodeficient mice, more than 90% of the cells were GFP(+). Transduction by Ad5FBs of the less primitive fraction within UCB CD34(+) cells was significant lower. Actually, the transduction frequency and GFP level declined gradually with increased expression of the CD33, CD38, and CD71 antigens. Flow cytometric analysis of transduced UCB CD34(+) cells that were cultured for 5 days on an allogeneic human bone marrow stroma layer showed maintenance of the phenotypically defined HSCs at levels similar to those of control cultures. The latter finding indicates that neither the transduction procedure nor the high levels of GFP were toxic for these cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号