首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
BACKGROUND: The INK4a-ARF (CDKN2A) locus, located on chromosome 9p21, encodes two functionally distinct tumor suppressor genes, p14(ARF) and p16(INK4a), that play active roles in the p53 and Rb tumor suppressive pathways, respectively. We analyzed the alterations of p14(ARF), p16(INK4a) and p53 to study the contribution of each pathway in tumorigenesis of 29 patients with primary and consecutive (second primary) squamous cell carcinoma of the head and neck (HNSCC), with a total of 68 carcinomas. METHODS: After microdissection, the DNA of 29 primary and 39 consecutive squamous cell carcinomas was analyzed for INK4a-ARF inactivation and p53 mutation by means of DNA sequence analysis, methylation-specific polymerase chain reaction (MSP), restriction-enzyme-related polymerase chain reaction (RE-PCR), multiplex RT-PCR and immunohistochemistry. In addition, microdeletions of p14(ARF) and p16(INK4a) were assessed using differential PCR. RESULTS: Altogether inactivation (methylation, loss of heterozygosity and mutation of exon 1beta) of p14(ARF) was found in 29 of all 68 (43%) carcinomas, with a significant difference in primary [8 of 29 (28%)] relative to second primary carcinomas [21 of 39 (54%)]. Methylation of p16(INK4a) occurred in 22 of 68 (32%) carcinomas with an even distribution among primary and consecutive tumors. Only two (secondary) carcinomas showed simultaneous promoter methylation of p14(ARF) and p16 (INK4a). Mutations of p53 were found in 32 of 68 HNSCCs (44%), evenly distributed among primary and recurrent carcinomas. p14(ARF) alterations showed no relationship to p53 mutations. CONCLUSIONS: Our data indicate that the INK4a-ARF-/p53 pathway was disrupted in 58 of 68 (84%) primary and recurrent tumors, either by p53 mutations or by INK4a-ARF inactivation. p14(ARF) methylation occurred independently of p16(INK4a) alterations and showed no correlation to p53 mutations. The significantly higher rate of p14(ARF) alterations in recurrent (respective second primary) carcinomas suggests a further acquired genetic aberration during the development of the recurrent carcinomas.  相似文献   

4.
The multistep process of tumorigenesis has not been decoded to date, although numerous investigations into probable molecular changes have meanwhile been conducted. However, not only DNA changes or loss of alleles cause deregulation of gene function, but also epigenetic alterations (e.g. methylation) result in functional loss. The INK4a-ARF (CDKN2A) locus, located on chromosome 9p21, encodes two functionally distinct tumor suppressor genes, p14ARF and p16INK4a, which play active roles in the p53 and Rb tumor suppressive pathways. We therefore examined not only p16 and p14 proteins, but also alterations of the INK4a-ARF locus, including methylation and loss of heterozygosity in benign and malignant tumors of the head and neck (squamous cell carcinomas and pleomorphic adenomas). In benign pleomorphic adenomas, methylation of p14ARF was found in 1 out of 42 (2%) cases, whereas alterations of p16INK4a occurred in 12/42 (29%) pleomorphic adenomas. In HNSCC, methylation of p16INK4a occurred in 16 out of 50 (32%) carcinomas. P14ARF was found to be methylated in 8 out of 50 cases (16%). Our results demonstrate that alterations of the INK4a-ARF locus are frequent and important events not only in the carcinogenesis of malignant, but also in benign tumors.  相似文献   

5.
The INK4a-ARF locus encodes two tumor suppressor proteins involved in cell-cycle regulation, p16INK4a and p14ARF, whose functions are inactivated in many human cancers. The aim of this study was to evaluate p14ARF and p16INK4a gene inactivation and its association with some clinocopathological parameters in colon cancer. The mutational and methylation status of the p14ARF and p16INK4a genes was analyzed in 60 primary colon carcinomas and 8 colon cancer cell lines. We have identified the first two reported mutations affecting exon 1beta of p14ARF in the HCT116 cell line and in one of the primary colon carcinomas. Both mutations occur within the N-terminal region of p14ARF, documented as important for nucleolar localization and interaction with Mdm2. Tumor-specific methylation of the p14ARF and p16INK4a genes was found in 33% and 32% of primary colon carcinomas, respectively. Methylation of the p14ARF was inversely correlated with p53 overexpression (p = 0.02). p14ARF and p16INK4a gene methylation was significantly more frequent in right-sided than in left-sided tumors (p = 0.02). Methylation of the p14ARF gene occurred more frequently in well-differentiated adenocarcinomas (p = 0.005), whereas the p16INK4a gene was more often methylated in poorly differentiated adenocarcinomas (p = 0.002). The present results underline the role of p14ARF and p16INK4a gene inactivation in the development of colon carcinoma. They suggest that the methylation profile of specific genes, in particular p14ARF and p16INK4a, might be related to biologically distinct subsets of colon carcinomas and possibly to different tumorigenic pathways.  相似文献   

6.
The INK4a-ARF locus encodes 2 separate proteins through differential splicing of alternative first exons to produce p16INK4a (exon 1alpha) and p14ARF (exon 1beta) products in human cells. The p16INK4a protein inhibits the cyclin D-dependent kinases (CDK) that control the phosphorylation of the Rb protein and cell proliferation. The p14ARF gene product can complex with and sequester the MDM2 protein within the nucleus, thus modulating the activity of the p53 protein. Loss of p16INK4a expression would disrupt the retinoblastoma (Rb)/p16INK4a/cyclin D-dependent kinase (CDK4) pathway, whereas loss of p14ARF expression would inactivate both the Rb and p53/ MDM2/p14ARF pathways through MDM2, which can complex with either Rb or p53. Loss of the p16INK4a gene on 9p21 has been documented in a wide range of human tumors, including one third of glioblastomas. However, in tumors showing homozygous loss of exon 2 of the p16INK4a gene, loss of exon 1beta of the p14ARF gene has not been established. In this study, we have assessed deletion of the p14ARF gene in 29 pediatric and 107 adult high-grade astrocytomas and 9 glioma cell lines, using multiplex PCR analysis for exon 1beta. We found homozygous deletions for exon 1alpha and exon 1beta in 3 of 29 (10%) of the pediatric cases (2 grade III, 1 grade IV), 25 of 107 (23%) of the adult cases (6 grade III and 19 grade IV), and 8 of 9 (89%) of the glioma cell lines. Therefore, loss of the INK4a-ARF locus in high-grade astrocytomas may contribute to the highly malignant behavior and treatment resistance of these tumors through elimination of multiple checkpoint cell cycle control proteins.  相似文献   

7.
8.
The INK4a gene locus on chromosome 9p21 encodes two proteins, p16(INK4a) and p14(ARF), which influence cell cycle control regulated by pRb and p53. The objective of this study was to use different methods for the analysis of the incidence of changes at the INK4a locus in head and neck cancer (HNSCC). Primary tumours were analysed for allelic imbalances (AI) with microsatellite markers for chromosome 9, by immunohistochemistry (IHC) and IHC with enhanced sensitivity by tyramide signal amplification (TSA-IHC), and by RT-PCR. No homozygous deletions at 9p21 were detected. AI at 9p21, which was found in approximately 60% of the tumours, completely failed to indicate the functional inactivation of the two INK4a gene products. Immunostaining of normal squamous epithelia revealed very low levels of p16(INK4a), whereas p14(ARF) was readily detectable. In 160 tumours, IHC suggested a loss of p16(INK4a) expression in 90%. However, by TSA-IHC, only 53.7% showed loss of p16(INK4a) expression, and this was consistent with the RT-PCR analyses. In 100 tumours analysed for both proteins, selective loss of p16(INK4a) occurred in 37%; loss of p14(ARF) was found in only 15%, and selective loss in only 4%; 11% of the tumours had lost both proteins. We conclude that only IHC with high sensitivity and the combined expression analysis of mRNAs and proteins is suitable for studying the role of INK4a in HNSCC. The INK4a gene expression defects are frequent but not universal and primarily affect p16(INK4a). Their clinical impact is still not clear.  相似文献   

9.
The INK4a/ARF locus (9p21) encodes two unique and unrelated cell cycle regulators, p16INK4a and p14ARF. This study was performed to evaluate the methylation status of p16INK4a and p14ARF genes, as well as its association with p16 and p53 expression, microsatellite instability (MI) status, and various clinicopathologic parameters in sporadic colorectal cancer. Sixty-five cases of primary colorectal adenocarcinoma with a series of clinicopathological parameters were obtained. We performed methylation-specific PCR of p16INK4a and p14ARF genes in colorectal cancer paraffin blocks with its paired normal samples, as well as immunohistochemical stainings for p16 and p53, and MI analysis. Aberrant methylations of p16INK4a and p14ARF gene were present in 21 (32.3%) and 33 (50.8%) out of 65 cases, respectively. p16INK4a aberrant methylation was correlated with p16 negativity (P=0.021) and p53 overexpression (P=0.007). p16INK4a aberrant methylation was more frequently present in poorly differentiated adenocarcinomas (P=0.002). Aberrant methylation of p14ARF gene occurred more frequently in patients under 50 years of age and in left-sided colon cancers, and was not statistically significant. Compared with the group with simultaneous absence of methylation in both promoters, the group showing concomitant alterations in both p16INK4a and p14ARF genes (n=10) more frequently presented lymph node metastasis (P=0.020) and higher tumor grade (P=0.014). There was no correlation between p16INK4a and p14ARF gene hypermethylation or MI status. This study suggests that simultaneous hypermethylation of both p16INK4a and p14ARF genes is greater prognostic value in sporadic human colorectal cancer.  相似文献   

10.
11.
INK4a/ARF locus codes for two different proteins, p16(INK4a) and p14(ARF), involved in cell cycle regulation. p14(ARF) is considered an upstream regulator of p53 function. To determine the role of these genes in the pathogenesis of human non-Hodgkin's lymphomas we have analyzed exon 1beta, 1alpha, and 2 of the INK4a/ARF locus and p53 gene aberrations in 97 tumors previously characterized for p16(INK4a) alterations. p53 alterations were detected in four of 51 (8%) indolent lymphomas but in 15 of 46 (33%) aggressive tumors. Inactivation of p14(ARF) was always associated with p16(INK4a) alterations. Exon 1beta was concomitantly deleted with exon 1alpha and 2 in eight tumors. One additional lymphoblastic lymphoma showed deletion of exon 1alpha and 2 but retained exon 1beta. No mutations were detected in exon 1alpha and 1beta in any case. Two of the three mutations detected in exon 2 caused a nonsense mutation in the p16(INK4a) reading frame and a missense mutation in the ARF reading frame involving the nucleolar transport domain of the protein. The third mutation was a missense mutation in the p16(INK4a) reading frame, but it was outside the coding region of p14(ARF). Aggressive lymphomas with p14(ARF) inactivation and p53 wild type showed a significantly lower p53 protein expression than tumors with no alteration in any of these genes. In this series of tumors, inactivation of the INK4a/ARF locus mainly occurred in tumors with a wild-type p53 gene because only two lymphomas showed simultaneous aberrations in these genes. Tumors with concomitant alterations of p16(INK4a) and p14(ARF)/p53 genes seem to exhibit a worse clinical behavior than lymphomas with no alterations or isolated inactivation of any of these genes. These findings indicate that p14(ARF) genetic alterations occur in a subset of aggressive NHLs, but they are always associated with p16(INK4a) aberrations. Concomitant disruption of p16(INK4a) and p14(ARF)/p53 regulatory pathways may have a cooperative effect in the progression of these tumors.  相似文献   

12.
Recent studies indicate that tumor suppressor genes can be epigenetically silenced through promoter hypermethylation. To further understand epigenetic alterations in cholangiocarcinoma, we have studied the methylation profiles of 12 candidate tumor suppressor genes (APC, E-cadherin/CDH1, MGMT, RASSF1A, GSTP, RAR-beta, p14ARF, p15INK4b, p16INK4a, p73, hMLH1 and DAPK) in 72 cases of cholangiocarcinoma, including equal number cases of intrahepatic cholangiocarcinoma and extrahepatic cholangiocarcinoma. A total of 10 cases of benign biliary epithelia were included as controls. The methylation status of tumor suppressor genes was analyzed using methylation-specific PCR. We found that 85% of all cholangiocarcinomas had methylation of at least one tumor suppressor gene. The frequency of tumor suppressor gene methylation in cholangiocarcinoma was: RASSF1A (65%), p15INK4b (50%), p16INK4a (50%), APC (46%), E-cadherin/CDH1 (43%), p14(ARF) (38%), p73 (36%), MGMT (33%), hMHL1 (25%), GSTP (14%), RAR-beta (14%) and DAPK (3%). Although single tumor suppressor gene methylation can be seen in benign biliary epithelium, methylation of multiple tumor suppressor genes is only seen in cholangiocarcinoma. About 70% (50/72) of the cholangiocarcinomas had three or more tumor suppressor genes methylated and 52% (38/72) of cases had four or more tumor suppressor genes methylated. Concerted methylation of multiple tumor suppressor genes was closely associated with methylation of RASSF1A, p16 and/or hMHL1. Methylation of RASSF1A was more common in extrahepatic cholangiocarcinoma than intrahepatic cholangiocarcinoma (83 vs 47%, P=0.003) while GSTP was more frequently seen in intrahepatic compared to extrahepatic cholangiocarcinoma (31 vs 6%, P=0.012). Our study indicates that methylation of promoter CpG islands of tumor suppressor genes is a common epigenetic event in cholangiocarcinoma. Based on distinct methylation profiles, intrahepatic cholangiocarcinoma and extrahepatic cholangiocarcinoma are two closely related but biologically unique neoplastic processes. Taking advantage of the unique concurrent methylation profile of multiple genes in cholangiocarcinoma may facilitate the distinction of cholangiocarcinoma from benign biliary epithelium in clinical settings.  相似文献   

13.
Two different proteins, p16(INK4a) and p14(ARF), encoded by the INK4a/ARF locus play important roles in the RB and p53 pathways, respectively. This study was performed to determine genetic and epigenetic alterations in the INK4a/ARF locus and their effects on the growth of osteosarcoma. Among six cell lines examined, both p16(INK4a) and p14(ARF) exons were homozygously deleted in two cell lines, MG63 and HOS, and both p16(INK4a) and p14(ARF) promoters were methylated in one cell line, U2OS. Wild-type mRNA and proteins for p16(INK4a) and p14(ARF) were expressed in three other cell lines, SaOS2, HuO9, and G292. Transfection studies were performed using two cell lines, U2OS and MG63. Both the RB and p53 genes were wild types in U2OS, whereas p53 but not RB was mutated in MG63. Both p16(INK4a) and p14(ARF) suppressed the growth of U2OS, whereas p16(INK4a) but not p14(ARF) suppressed the growth of MG63. p53 only did not suppress the growth of MG63 either; however, coexpression of p14(ARF) with p53 increased the fraction of the G0/G1 phase in MG63 cells. The data presented here demonstrate the importance of genetic and epigenetic alterations in the INK4a/ARF locus for the growth of osteosarcoma and thus will be useful to further understand the biologic behavior of osteosarcoma in association with the defects in the p53 and RB pathways.  相似文献   

14.
We examined alterations of the p16INK4, p14ARF, p15, TP53, and MDM2 genes in 30 osteosarcomas and 24 Ewing sarcomas. Among 21 osteosarcomas and 24 Ewing sarcomas, p16INK4, p14ARF, and p15 abnormalities were found in 4 (19%), 2 (9%), and 3 (14%) osteosarcomas, respectively, and in 4 (17%), 3 (13%), and 4 (17%) Ewing sarcomas, respectively. The alterations of p16INK4, p14ARF, and p15 included homozygous deletions spanning all 3 genes, methylation of p16INK4 or p15, and a nonsense mutation of p16INK4, which simultaneously caused a missense mutation of p14ARF. Alterations of TP53 were found in 15 (50%) of 30 osteosarcomas and 1 (3%) of 24 Ewing sarcomas. None of the sarcomas showed MDM2 amplification. While TP53 abnormalities were far more frequent in osteosarcoma than in Ewing sarcoma, alterations of p16INK4, p14ARF, and p15 were present at similar frequencies in the two types of sarcoma. The event-free survival (EFS) was worse in Ewing sarcoma patients with p16INK4 and p14ARF mutation/deletion than in those without the mutation/deletion (P = 0.019), and EFS was worse in osteosarcoma patients with TP53 alterations than in those without TP53 alterations (P = 0.048). The different incidence of TP53 abnormalities in the 2 types of sarcoma may reflect differences of the molecular processes through which the 2 types of tumor develop.  相似文献   

15.
We examined alterations of the p16INK4, p14ARF, p15, TP53, and MDM2 genes in 30 osteosarcomas and 24 Ewing sarcomas. Among 21 osteosarcomas and 24 Ewing sarcomas, p16INK4, p14ARF, and p15 abnormalities were found in 4 (19%), 2 (9%), and 3 (14%) osteosarcomas, respectively, and in 4 (17%), 3 (13%), and 4 (17%) Ewing sarcomas, respectively. The alterations of p16INK4, p14ARF, and p15 included homozygous deletions spanning all 3 genes, methylation of p16INK4 or p15, and a nonsense mutation of p16INK4, which simultaneously caused a missense mutation of p14ARF. Alterations of TP53 were found in 15 (50%) of 30 osteosarcomas and 1 (3%) of 24 Ewing sarcomas. None of the sarcomas showed MDM2 amplification. While TP53 abnormalities were far more frequent in osteosarcoma than in Ewing sarcoma, alterations of p16INK4, p14ARF, and p15 were present at similar frequencies in the two types of sarcoma. The event-free survival (EFS) was worse in Ewing sarcoma patients with p16INK4 and p14ARF mutation/deletion than in those without the mutation/deletion (P = 0.019), and EFS was worse in osteosarcoma patients with TP53 alterations than in those without TP53 alterations (P = 0.048). The different incidence of TP53 abnormalities in the 2 types of sarcoma may reflect differences of the molecular processes through which the 2 types of tumor develop.  相似文献   

16.
Knowledge about the molecular mechanisms involved in the pathogenesis of tumoral progression in mycosis fungoides (MF) is still scarce. Because the 9p21 locus seems to be a good target for a detailed study in MF, this prompted us to compare the mechanisms of inactivation of the p16(INK4a), p15(INK4b), and p14(ARF) genes in aggressive and stable forms of MF, performing microsatellite analysis, methylation-specific polymerase chain reaction, direct sequencing, and p16(INK4a) protein expression by immunohistochemistry. Additionally, the p53 gene was also sequenced in tumoral lesions. Thirty-nine patients with stable MF were studied. Alterations in p16(INK4a) and p15(INK4b) genes were detected in 18% and 5% of the cases, respectively. None of the cases analyzed showed alterations of the p14(ARF) gene. In contrast with these findings, in the 11 patients with aggressive MF, alterations of the p16(INK4a), p15(INK4b), or p14(ARF) genes were found in 8 (73%), 3 (27%), and 2 (18%) cases, respectively. A significant proportion (4/11) of these alterations were already present in the p16(INK4a) gene in the initial plaque lesions in these aggressive forms of MF. Alterations in the p16(INK4a) gene, either methylation or loss of heterozygosity, were clearly more frequent than those in the p15(INK4b) and p14(ARF) genes. These p16(INK4A) alterations were confirmed using immunohistochemistry. None of the nine tumoral lesions analyzed showed mutations in exons 1-2 of the p16(INK4a) gene or in exons 5-8 of the p53 gene. These results seem to suggest that 9p21 alterations, and selectively p16(INK4a) silencing, could be a characteristic phenomenon in MF progression.  相似文献   

17.
p14ARF deletion and methylation in genetic pathways to glioblastomas   总被引:7,自引:0,他引:7  
The CDKN2A locus on chromosome 9p21 contains the p14ARF and p16INK4a genes, and is frequently deleted in human neoplasms, including brain tumors. In this study, we screened 34 primary (de novo) glioblastomas and 16 secondary glioblastomas that had progressed from low-grade diffuse astrocytomas for alterations of the p14ARF and p16INK4a genes, including homozygous deletion by differential PCR, promoter hypermethylation by methylation-specific PCR, and protein expression by immunohistochemistry. A total of 29 glioblastomas (58%) had a p14ARF homozygous deletion or methylation, and 17 (34%) showed p16INK4a homozygous deletion or methylation. Thirteen glioblastomas showed both p14ARF and p16INK4a homozygous deletion, while nine showed only a p14ARF deletion. Immunohistochemistry revealed loss of p14ARF expression in the majority of glioblastomas (38/50, 76%), and this correlated with the gene status, i.e. homozygous deletion or promoter hypermethylation. There was no significant difference in the overall frequency of p14ARF and p16INK4a alterations between primary and secondary glioblastomas. The analysis of multiple biopsies from the same patients revealed hypermethylation of p14ARF (5/15 cases) and p16INK4a (1/15 cases) already at the stage of low-grade diffuse astrocytoma but consistent absence of homozygous deletions. These results suggest that aberrant p14ARF expression due to homozygous deletion or promoter hypermethylation is associated with the evolution of both primary and secondary glioblastomas, and that p14ARF promoter methylation is an early event in subset of astrocytomas that undergo malignant progression to secondary glioblastoma.  相似文献   

18.
Mantle cell lymphoma (MCL) is characterized by the chromosomal translocation t(11;14)(q13;q32), resulting in overexpression of CCND1 in the vast majority of cases. In addition, alterations of other cell-cycle-regulating signal pathways (CDKN2B/CDKN2A-CCND1 and ARF-MDM2-TP53) are frequently observed. However, the hierarchy of promoter methylations and genomic alterations as well as the interaction with other cell-cycle regulator CDKN1A is poorly understood. A complete methylation-specific PCR coupled with direct sequencing of 71 MCL patient samples previously characterized for TP53 alterations, Ki67 expression by immunohistochemistry, and other genomic alterations was performed. In contrast to rare p16(INK4a) promoter methylation (9%), frequent p15(INK4b) (62%) and p14(ARF) (70%) promoter methylation was detectable in MCL. In an additional 16% of MCL cases, LOH for p16(INK4a) was detected. However, MCL cases with p15(INK4b) methylation tended to have lower proliferation (73% vs. 57%), and p15(INK4b) and p14(ARF) promoter methylation was also detected in normal stem cells. Therefore, epigenetic changes of those genes seem not to represent primary oncogenic mechanisms but physiological mechanisms of cell regulation. The rare p16(INK4a) promoter methylation and p16(INK4a) genetic alterations were directly correlated to cell proliferation and therefore are regarded as additional molecular alterations involved in the cell-cycle dysregulation of MCL.  相似文献   

19.
The INK4a/ARF locus on human chromosome band 9p21 carries two tumor suppressor genes, TP14ARF and TP16INK4a, and both are frequently inactivated in nonsmall cell lung carcinoma (NSCLC. TP14ARF and TP16INK4a play important roles in the TP53 and RB tumor suppressor pathways, respectively. To elucidate the genetic and epigenetic status of the TP14ARF and TP16INK4a genes in NSCLC, we comprehensively analyzed mutations, homozygous deletions, methylations in the CpG regions, and expression of the TP14ARF and TP16INK4a genes in 31 NSCLC cell lines. TP16INK4a (84%) was inactivated more frequently than TP14ARF (55%). Moreover, p16INK4a was inactivated in all 17 cell lines with TP14ARF inactivation. Three cell lines with base substitutions in exon 2 resulted in missense mutations of TP16INK4a but silent mutations of TP14ARF. There was a case of mutation in exon 1alpha unique to TP16INK4a, but not a mutation in exon 1beta unique to TP14ARF. The TP16INK4a gene was methylated in 6 cell lines, but the TP14ARF gene was not methylated in any cell line. Unlike a mutually exclusive relationship for inactivation between TP16INK4a and RB, TP14ARF and TP53 did not show such a relationship (P = 0.61, Fisher exact test). Thus, the present results indicate the TP16INK4a gene to be the primary target of INK4a/ARF locus alterations. Transient TP14ARF expression induced G1 arrest in the cells with wild-type TP53, but not in the cells with mutated TP53. Thus, the pathogenetic and biologic significance of TP14ARF inactivation is different between NSCLC cells with wild-type TP53 and those with mutated TP53.  相似文献   

20.
The INK4A and the INK4B genes map to chromosome 9p21, an area frequently deleted in bladder neoplasms. In addition to the p16 protein, the INK4A encodes for a second product, termed p19(ARF). We analyzed tissues from 121 patients with initial Ta and T1 tumors. Deletions of the INK4A gene were observed in 17 of 121 (14.1%) cases. Point mutations were identified in 2 of 64 (3.1%) tumors. The INK4A-exon 1beta and the INK4B gene were codeleted with INK4A in all of the homozygously deleted cases analyzed. The p16 promoter underwent de novo methylation in 7 of 47 (14.9%) evaluable cases. The p16-positive phenotype was observed in 18 of 56 (32%) evaluable cases. p16 negative phenotype correlated with deletion and methylation status. A statistically significant association between INK4A homozygous deletions and tumor size was observed (P = 0.003). Patients bearing tumors with INK4A homozygous deletions had a lower recurrence-free survival (P = 0.040) than those with wild type INK4A. In conclusion, deletions and methylation of the INK4A gene occur frequently in superficial bladder tumors. However, only those deletions that affect both the p16 and the p19(ARF), deregulating both the pRb and p53 pathways, correlated with clinicopathological parameters of worse prognosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号