首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Progesterone (P4) is a biologically active steroid hormone that is involved in the regulation of oocyte growth and maturation, as well as development of the endometrium and implantation in the uterus of humans. It can also stimulate oocyte maturation in female fish, as well as spermatogenesis and sperm motility in male fish. Thus, P4 has been extensively used in human and animal husbandry as a typical progestin. However, P4 remaining in the water environment will pose a potential hazard to aquatic organisms. For example, it can interfere with sex differentiation and reproduction in aquatic vertebrates such as fish. Therefore, we investigated the effects of prolonged progesterone exposure on the expression of genes related to circadian rhythm signaling and the hypothalamic‐pituitary‐gonadal (HPG) axes in Yellow River Carp, which may have a potential impact on their sex differentiation. Our results suggested that P4 exposure altered the expression of genes related to circadian rhythm signaling, which can lead to disorders in the endocrine system and regulate the HPG axes‐related activities. Furthermore, the expression of genes related to the HPG axes was also altered, which might affect gonadal development and the reproductive systems of Yellow River Carp. In addition, these changes may provide a plausible mechanism for the observed shifts in their sex ratio toward females.  相似文献   

2.
Cytochrome P450s (CYPs) play a prominent role in drug metabolism and biotransformation which are distributed in liver of aquatic animals. However, limited information is available about CYP genes involved in drug metabolism in fish. In the present study, we explore CYP1A characterization for DIF metabolism. Firstly, we cloned and characterized the full-length cDNA sequence of a CYP1A gene from crucian carp (hybridized Prussian carp), the predicted protein sequence for CYP1A comprise 496 amino acids. The heme-binding region of the CYP1A, encompassing the amino acid sequence GLGKRRCIG, which is identical to the same region of other homologues. Secondly, we studied the difloxacin (DIF) kinetics and the effects of DIF on their corresponding CYP1A mRNA levels in liver of crucian carp. CYP1A1 mRNA expression was analyzed by real-time PCR, and DIF concentration was determined by reversed-phase high-performance liquid chromatography (RP-HPLC). Results showed that the concentration of DIF in liver reached its peak (67.70 mg kg(-1)) at 0.5h, while the CYP1A1 gene expression was at the lowest point. CYP1A mRNA was down-regulated by 6.5 mg ml(-1) DIF in the liver of crucian carp. Thus, our work confirmed that DIF is both the substrate and inhibitor of CYP1A. The information provided a model for the potential utility of gene expression analysis and drug metabolization in fish.  相似文献   

3.
4.
The aryl hydrocarbon receptor (AhR) mediates adverse effects of dioxins, but its physiological role remains ambiguous. The similarity between AhR and canonical circadian clock genes suggests potential involvement of AhR in regulation of circadian timing. Photoproducts of tryptophan (TRP), including 6-formylindolo[3,2-b]carbazole (FICZ), have high affinity for AhR and are postulated as endogenous ligands. Although TRP photoproducts activate AhR signaling in vitro, their effects in vivo have not been investigated in mammals. Because TRP photoproducts may act as transducers of light, we examined their effects on the circadian clock. Intraperitoneal injection of TRP photoproducts or FICZ to C57BL/6J mice dose dependently induced AhR downstream targets, cytochrome P4501A1 (CYP1A1) and cytochrome P4501B1 mRNA expression, in liver. c-fos mRNA, a commonly used marker for light responses, was also induced with FICZ, and all responses were AhR dependent. A rat-immortalized suprachiasmatic nucleus (SCN) cell line, SCN 2.2, was used to examine the direct effect of TRP photoproducts on the molecular clock. Both TRP photoproducts and FICZ-increased CYP1A1 expression and prolonged FICZ incubation altered the circadian expression of clock genes (Per1, Cry1, and Cry2) in SCN 2.2 cells. Furthermore, FICZ inhibited glutamate-induced phase shifting of the mouse SCN electrical activity rhythm. Circadian light entrainment is critical for adjustment of the endogenous rhythm to environmental light cycle. Our results reveal a potential for TRP photoproducts to modulate light-dependent regulation of circadian rhythm through triggering of AhR signaling. This may lead to further understanding of toxicity of dioxins and the role of AhR in circadian rhythmicity.  相似文献   

5.
昼夜节律睡眠-觉醒障碍是指睡眠-觉醒周期与人体24 h生物节律失调所致的一类睡眠疾病,它可以影响人体的认知功能和代谢等过程,还能促进恶性肿瘤的发生发展——通过改变时钟基因表达直接促进肿瘤增殖,并通过抑制褪黑素的分泌等内分泌机制间接加速肿瘤发展。本文阐述了昼夜节律睡眠-觉醒障碍的定义、它导致的病理状态以及它对恶性肿瘤发生发展的影响,以期为昼夜节律性睡眠-觉醒障碍影响的肿瘤发生发展的防治提供可能的治疗措施。  相似文献   

6.
7.
Two metallothionein cDNAs (MT-A and MT-B) in the fresh-water fish crucian carp (Carassius cuvieri Temminck et Schlegel) were cloned. Sequence analysis of both cDNAs gave the structure of a coding region corresponding to 60 amino acid residues. The homology of their deduced amino acid sequences was completely conserved at the positions of the cysteine residue, but a significant difference existed in the size of their 3'-untranslated regions (130 base pairs for MT-A and 280 base pairs for MT-B). Direct amino acid sequencing of the MT-II isoform purified by HPLC was accomplished for up to 30 residues and its sequence was identical to that deduced from MT-B cDNA. This is the first case in vertebrates that N-terminal methionine in crucian carp MT-II was not blocked. By northern blot analysis, basal and cadmium chloride- or dexamethasone-induced MT-B (MT-II) mRNAs were detected time dependently after treatment. On the other hand, the expression of MT-A mRNA was extremely low. These results indicate that the MT isoform II in crucian carp is coded by the MT-B gene, and that the MT-B-dominant expression of mRNA in crucian carp may be due to the difference in the 3'-untranslated regions of MT mRNAs.  相似文献   

8.
CYP4X1是CYP4新的亚家族成员,也是重要的Orphans CYPs成员之一。其核苷酸序列同源性分析显示CYP4X1结构在跨物种间是高度保守的,这预示着它具有重要的生物学功能。CYP4X1广泛存在于人体各组织中,尤其选择性在脑内高表达,提示其可能在神经血管功能中扮演关键作用。CYP4X1的表达存在昼夜节律调节、明显的性别差异和年龄差异以及外源物可诱导其表达。CYP4X1重要的生物学功能之一是代谢内源性大麻素Anandamide生成唯一的单加成产物14,15-EET-EA以及参与脂肪的代谢。EET-EAs可能发挥着EETs相似的生物学功能。此外,CYP4X1与肿瘤的分级有关,其可能成为肿瘤治疗的潜在药物靶标。  相似文献   

9.
This paper reviews the recent discovery of clock genes that provide the mechanism for the regulation of circadian and seasonal rhythms in lower organisms and in humans and relates these clock genes to the circadian abnormalities in depression. (1) A subgroup of depressed patients have documented circadian abnormalities in mood, sleep, temperature and neuroendocrine secretion; (2) It is also suggested that seasonal affective disorder (SAD) patients may show an abnormality in their ability to shift their daily circadian rhythms in response to seasonal light changes; (3) The dramatic improvements in some depressions in response to three treatment modalities which manipulate circadian rhythms suggest that circadian abnormalities reported in patients may constitute a core component of the pathophysiology in depression; (4) Mutations in clock genes have been discovered that accelerate or delay circadian cycles; (5) It is hypothesized that 24-hour rhythm abnormalities in major depression and SAD may be due to altered clock genes.  相似文献   

10.
Current views on the organisation and functions of the circadian rhythm system are outlined. Evidence is presented supportive of the notion that the pathophysiology of the affective disorders involves a disruption of circadian rhythms and that the primary locus of action of agents effective in the affective disorders is on the circadian rhythm system. Potential disruptions of this system are enumerated. Such a hypothesis, it is argued, might potentially unite the disparate neurochemical and neuroendocrinological findings emerging in both depression and mania. There are in addition neuropsychological and nosological implications of such a framework, which may help bridge the divide between molecular and behavioural approaches to research on the affective disorders which are outlined.  相似文献   

11.
Fenvalerate (Fen), a widely used pesticide, is known to impair male reproductive functions by mechanisms that remain to be elucidated. Recent studies indicated that circadian clock genes may play an important role in successful male reproduction. The aim of this study was to determine the effects of Fen on circadian clock genes involved in the biosynthesis of testosterone using TM3 cells derived from mouse Leydig cells. Data demonstrated that the circadian rhythm of testosterone synthesis in TM3 cells was disturbed following Fen treatment as evidenced by changes in the circadian rhythmicity of core clock genes (Bmal1, Rev-erbα, Rorα). Further, the observed altered rhythms were accompanied by increased intracellular Ca2+ levels and modified steroidogenic acute regulatory (StAR) mRNA expression. Thus, data suggested that Fen inhibits testosterone synthesis via pathways involving intracellular Ca2+ and clock genes (Bmal1, Rev-Erbα, Rorα) as well as StAR mRNA expression in TM3 cells.  相似文献   

12.
1. The aim of this study was to investigate the effect of chronic angiotensin II (AngII) infusion on the circadian rhythms of arterial blood pressure, heart rate (HR) and locomotor activity (ACT) in male and female rats. 2. Radiotelemetry probes were implanted into the aorta in male and female rats and allowed 10 days for recovery. Control levels for mean arterial pressure (MAP), HR and ACT were recorded for 3 days, then AngII (400 ng/kg per min s.c. via osmotic minipump) or vehicle (saline) was infused for 10 days (n = 6 per group). Further recordings of MAP, HR and ACT were made during days 8, 9 and 10 of the infusion period. 3. In response to AngII infusion, night and day-time MAP increased significantly in female (18 +/- 2 mmHg; 28 +/- 7 mmHg) and male (27 +/- 4 mmHg; 30 +/- 3 mmHg) rats, respectively. The degree of elevation in MAP in response to AngII was attenuated in the females during the night period (P(sex) < 0.05) but not the day (P(sex) = 0.2). Control night-day differences in MAP, HR and ACT averaged 7 +/- 1 mmHg, 58 +/- 5 b.p.m. and 30 +/- 4 units in the female and 6 +/- 1 mmHg, 43 +/- 3 b.p.m. (P(sex) < 0.05) and 14 +/- 2 units (P(sex) < 0.05) in male rats, respectively. AngII infusion disrupted MAP circadian rhythm in female (-4 +/- 2 mmHg) and male rats (1 +/- 2 mmHg; P(treat) < 0.01), but did not affect heart rate or locomotor activity. 4. In conclusion, sex differences in the circadian rhythm of heart rate and locomotor activity, but not arterial pressure exist under basal conditions. Circulating AngII modulated the circadian rhythm of MAP in female and male rats but not heart rate or locomotor activity. These findings have important implications for our understanding of circadian blood pressure rhythms in states of activation of the renin angiotensin system.  相似文献   

13.
14.
15.
Genetic analyses of circadian rhythm sleep disorders (CRSD), such as familial advanced sleep phase syndrome (ASPS) and delayed sleep phase syndrome (DSPS), and morningness-eveningness revealed the relationship between variations in clock genes and diurnal change in human behaviors. Variations such as T3111C in the Clock gene are reportedly associated with morningness-eveningness. Two of the pedigrees of familial ASPS (FASPS) are caused by mutations in clock genes: the S662G mutation in the Per2 gene or the T44A mutation in the casein kinase 1 delta (CK1delta) gene, although these mutations are not found in other pedigrees of FASPS. As for DSPS, a missense variation in the Per3 gene is identified as a risk factor, while the one in the CK1epsilon gene is thought to be protective. These findings suggest that further, as yet unidentified, gene variations are involved in human circadian activity. Many of the CRSD-relevant variations reported to date seem to affect the phosphorylation status of the clock proteins. A recent study using mathematical models of circadian rhythm generation has provided a new insight into the role of phosphorylation in the molecular mechanisms of these disorders.  相似文献   

16.
The circadian rhythm of pineal melatonin secretion, which is controlled by the suprachiasmatic nucleus (SCN), is reflective of mechanisms that are involved in the control of the sleep/wake cycle. Melatonin can influence sleep-promoting and sleep/wake rhythm-regulating actions through the specific activation of MT(1) (melatonin 1a) and MT(2) (melatonin 1b) receptors, the two major melatonin receptor subtypes found in mammals. Both receptors are highly concentrated in the SCN. In diurnal animals, exogenous melatonin induces sleep over a wide range of doses. In healthy humans, melatonin also induces sleep, although its maximum hypnotic effectiveness, as shown by studies of the timing of dose administration, is influenced by the circadian phase. In both young and elderly individuals with primary insomnia, nocturnal plasma melatonin levels tend to be lower than those in healthy controls. There are data indicating that, in affected individuals, melatonin therapy may be beneficial for ameliorating insomnia symptoms. Melatonin has been successfully used to treat insomnia in children with attention-deficit hyperactivity disorder or autism, as well as in other neurodevelopmental disorders in which sleep disturbance is commonly reported. In circadian rhythm sleep disorders, such as delayed sleep-phase syndrome, melatonin can significantly advance the phase of the sleep/wake rhythm. Similarly, among shift workers or individuals experiencing jet lag, melatonin is beneficial for promoting adjustment to work schedules and improving sleep quality. The hypnotic and rhythm-regulating properties of melatonin and its agonists (ramelteon, agomelatine) make them an important addition to the armamentarium of drugs for treating primary and secondary insomnia and circadian rhythm sleep disorders.  相似文献   

17.
Circadian rhythm and sleep disruptions occur frequently in individuals with alcohol use disorders (AUD) and present significant barriers to treatment. Recently, a variant of adenosine transporter, equilibrative nucleoside transporter 1 (ENT1), was associated with the co-occurrence of sleep problems and AUD. We have previously shown that mice lacking ENT1 (ENT1 KO) have reduced adenosine levels in the striatum and drink more alcohol compared with wild types (WT). However, it is unknown whether ENT1 deletion disrupts circadian rhythms, which may contribute to alcohol preference in ENT1 KO mice. Here we used these mice to determine whether endogenous adenosine regulates circadian genetic and behavioral rhythms and influences alcohol intake during chronodisruption. We examined circadian locomotor activity in ENT1 KO vs WT littermates and found that ENT1 KO mice were both active earlier and hyperactive compared with WT mice at night. We used real-time PCR and immunohistochemistry to estimate striatal clock gene levels and found that PER2 expression in the striatum was blunted by ENT1 deletion or A2A receptor (A2AR) antagonism. Next, we exposed ENT1 KO and WT mice to constant light (LL) and found further elevation in ethanol intake in ENT1 KO, but not in WT mice, supporting the notion that circadian dysfunction may contribute to increased alcohol intake in ENT1 KO mice. Finally, we showed that A2AR agonist administration normalized PER1 and PER2 expression and circadian locomotor activity in ENT1 KO mice. Together, our results demonstrate that adenosine signaling regulates cellular and behavioral circadian timing and influences alcohol intake during chronodisruption.  相似文献   

18.
A circadian clock controls various physiological and behavioral rhythms. In mammals, a master circadian clock exists in the suprachiasmatic nucleus of the hypothalamus, and slave oscillators can be found in most tissues. These circadian oscillations are controlled by "clock genes". The negative feedback loop is thought to function as a molecular mechanism of the circadian clock. It is plausible that clock genes may control lipid metabolism through so-called clock-controlled genes and that lipid metabolism-related clock-controlled genes may play important roles in the circadian change of lipid metabolism. Recently research has focused on the relationships between the clock system and lipid metabolism. In this review, we discuss the following items: 1) circadian clock system, 2) effect of the diet on clock gene expression, 3) effect of clock mutation on lipid metabolism, and 4) effect of streptozotocin-induced diabetes and ob mutation on clock gene expression and lipid metabolism. In this review we have summarized how the circadian clock affects lipid metabolism through the expression of lipid metabolism-related clock-controlled genes and at the same time discussed how abnormal metabolism of lipid affects the expression of clock genes. Further experiments are needed to elucidate the detailed mechanism of interaction between clock genes and lipid metabolisms.  相似文献   

19.
Recent studies have shown that functional variations in clock genes, which generate circadian rhythms through interactive positive/negative feedback loops, contribute to the development of circadian rhythm sleep disorders in humans. Another potential candidate for rhythm disorder susceptibility is casein kinase I epsilon (CKIepsilon), which phosphorylates clock proteins and plays a pivotal role in the circadian clock. To determine whether variations in CKIepsilon induce vulnerability to human circadian rhythm sleep disorders, such as delayed sleep phase syndrome (DSPS) and non-24-h sleep-wake syndrome (N-24), we analyzed all of the coding exons of the human CKIepsilon gene. One of the variants identified encoded an amino-acid substitution S408N, eliminating one of the putative autophosphorylation sites in the carboxyl-terminal extension of CKIepsilon. The N408 allele was less common in both DSPS (p = 0.028) and N-24 patients (p = 0.035) compared to controls. When DSPS and N-24 subjects were combined, based on an a priori prediction of a common mechanism underlying both DSPS and N-24, the inverse association between the N408 allele and rhythm disorders was highly significant (p = 0.0067, odds ratio = 0.42, 95% confidence interval: 0.22-0.79). In vitro kinase assay revealed that CKIepsilon with the S408N variation was approximately 1.8-fold more active than wild-type CKIepsilon. These results indicate that the N408 allele in CKIepsilon plays a protective role in the development of DSPS and N-24 through alteration of the enzyme activity.  相似文献   

20.
Light is involved in providing entrainment of circadian rhythms and the suppression of the pineal hormone melatonin. In patients with affective disorders, there have been indications of circadian as well as seasonal variation in illness, which may be reflected in melatonin production. Varying sensitivity to light has been noted within healthy individuals as well as in some patients with affective disorders. Recent evidence suggests that patients with panic disorder may have an altered and phase-delayed melatonin rhythm. The present study examined the nocturnal plasma melatonin rhythm in patients with panic disorder, and also examined their melatonin sensitivity to dim light. The melatonin rhythm was examined in 6 patients with panic disorder and 8 controls. The melatonin sensitivity to dim white light (200 lx) was examined in 8 patients with panic disorder and 63 controls and was compared to that of a group of 7 patients with other anxiety disorders. Patients with panic disorder demonstrated a trend towards higher and delayed peak melatonin levels compared to controls. Patients with panic disorder also had a subsensitive melatonin suppression by dim white light, compared to controls and patients with other anxiety disorders (p<0.005). The phase-delayed circadian rhythm observed in patients with panic disorder may be secondary to the subsensitivity of the melatonin response to light. It is hypothesized that the subsensitivity may be due to abnormal neurotransmitter/receptor systems involved in regulation of melatonin suppression and circadian rhythmicity, and may lead to phase- delayed circadian rhythms. The melatonin subsensitivity to light may be used as a biological marker of panic disorder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号