首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Murayama R, Kobayashi M, Takeshita A, Yasui T, Yamamoto M. MAPKs, activator protein‐1 and nuclear factor‐κB mediate production of interleukin‐1β‐stimulated cytokines, prostaglandin E 2 and MMP‐1 in human periodontal ligament cells. J Periodont Res 2011; 46: 568–575. © 2011 John Wiley & Sons A/S Background and Objective: Determination of the interleukin‐1 (IL‐1) signaling cascades that lead to the production of various inflammatory mediators and catabolic factors may clarify attractive targets for therapeutic intervention for periodontitis. We comprehensively assessed the involvement of MAPKs, activator protein‐1 (AP‐1) and nuclear factor‐κB (NF‐κB) in IL‐1β‐induced production of interleukin‐6 (IL‐6), interleukin‐8 (IL‐8), prostaglandin E2 (PGE2) and MMP‐1 in human periodontal ligament cells. Material and Methods: Human periodontal ligament cells were pretreated with an inhibitor for each of the MAPKs or NF‐κB and subsequently treated with IL‐1β. Following treatment, phosphorylation of three types of MAPK (ERK, p38 MAPK and c‐Jun N‐terminal kinase), IκB kinase (IKK) α/β/γ and IκB‐α, as well as the DNA binding activity of AP‐1 and NF‐κB and the production of IL‐6, IL‐8, PGE2 and MMP‐1, were determined by western blotting, a gel mobility shift assay and ELISA, respectively. Results: The three MAPKs, simultaneously activated by IL‐1β, mediated the subsequent DNA binding of AP‐1 at various magnitudes, while IKKα/β/γ, IκB‐α and NF‐κB were also involved in the IL‐1 signaling cascade. Furthermore, IL‐1β stimulated the production of IL‐6, IL‐8, PGE2 and MMP‐1 via activation of the three MAPKs and NF‐κB, because inhibitors of these significantly suppressed the IL‐1β‐stimulated production of these factors. Conclusion: Our results strongly suggest that MAPK, AP‐1 and NF‐κB mediate the IL‐1β‐stimulated synthesis of IL‐6, IL‐8, PGE2 and MMP‐1 in human periodontal ligament cells. Therefore, inhibition of activation of MAPK, AP‐1 and/or NF‐κB may lead to therapeutic effects on progression of periodontitis.  相似文献   

5.
Background: Recent studies have shown that the 15‐member macrolide antibiotic azithromycin (AZM) not only has antibacterial activity, but also results in the role of immunomodulator. Interleukin (IL)‐8 is an important inflammatory mediator in periodontal disease. However, there have been no reports on the effects of AZM on IL‐8 production from human oral epithelium. Therefore, we investigated the effects of AZM on IL‐8 production in an oral epithelial cell line. Methods: KB cells were stimulated by Escherichia coli or Aggregatibacter actinomycetemcomitans (previously Actinobacillus actinomycetemcomitans) lipopolysaccharide (LPS) with or without AZM. IL‐8 mRNA and protein expression and production in response to LPS were analyzed by quantitative polymerase chain reaction, flow cytometry, and enzyme‐linked immunosorbent assay. The activation of nuclear factor‐kappa B (NF‐κB) and Rac1, which is important for IL‐8 expression, was analyzed by enzyme‐linked immunosorbent assay and Western blotting, respectively. Results: IL‐8 mRNA expression, IL‐8 production, and NF‐κB activation in LPS‐stimulated KB cells were inhibited by the addition of AZM. LPS‐induced Rac1 activation was also suppressed by AZM. Conclusions: This study suggests that AZM inhibits LPS‐induced IL‐8 production in an oral epithelial cell line, in part caused by the suppression of Rac1 and NF‐κB activation. The use of AZM might provide possible benefits in periodontal therapy, with respect to both its antibacterial action and apparent anti‐inflammatory effect.  相似文献   

6.
7.
8.
Toll‐like receptor 9 (TLR9) expression is increased in periodontally diseased tissues compared with healthy sites indicating a possible role of TLR9 and its ligand, bacterial DNA (bDNA), in periodontal disease pathology. Here, we determine the immunostimulatory effects of periodontal bDNA in human monocytic cells (THP‐1). THP‐1 cells were stimulated with DNA of two putative periodontal pathogens: Porphyromonas gingivalis and Tannerella forsythia. The role of TLR9 in periodontal bDNA‐initiated cytokine production was determined either by blocking TLR9 signaling in THP‐1 cells with chloroquine or by measuring IL‐8 production and nuclear factor‐κB (NF‐κB) activation in HEK293 cells stably transfected with human TLR9. Cytokine production (IL‐1β, IL‐6, and TNF‐α) was increased significantly in bDNA‐stimulated cells compared with controls. Chloroquine treatment of THP‐1 cells decreased cytokine production, suggesting that TLR9‐mediated signaling pathways are operant in the recognition of DNA from periodontal pathogens. Compared with native HEK293 cells, TLR9‐transfected cells demonstrated significantly increased IL‐8 production (P < 0.001) and NF‐κB activation in response to bDNA, further confirming the role of TLR9 in periodontal bDNA recognition. The results of PCR arrays demonstrated upregulation of proinflammatory cytokine and NF‐κB genes in response to periodontal bDNA in THP‐1 cells, suggesting that cytokine induction is through NF‐κB activation. Hence, immune responses triggered by periodontal bacterial nucleic acids may contribute to periodontal disease pathology by inducing proinflammatory cytokine production through the TLR9 signaling pathway.  相似文献   

9.
Background: Rosuvastatin exhibits anti‐inflammatory effects and reduces periodontal diseases and atherosclerosis; however, its role in regulating periodontopathogen‐induced endothelial proinflammatory responses remains unclear. The purpose of this study is to determine whether rosuvastatin can reduce the proinflammatory response induced by Aggregatibacter actinomycetemcomitans (Aa) in human coronary artery endothelial cells (HCAECs). Methods: HCAECs were stimulated with purified Aa serotype b lipopolysaccharide (LPS) (Aa‐LPS), heat‐killed (HK) bacteria (Aa‐HK), or live bacteria. Expression of Toll‐like receptors and cellular adhesion molecules were evaluated by fluorometric enzyme‐linked immunosorbent assay. Endothelial cell activation was evaluated by quantifying nuclear factor (NF)‐kappa B‐p65 and cytokine expression levels by quantitative polymerase chain reaction and flow cytometry. Effect of rosuvastatin in expression of the atheroprotective factor Krüppel‐like factor 2 (KLF2) and cytokines were also studied using similar approaches. Results: HCAECs showed increased interleukin (IL)‐6, IL‐8, intercellular adhesion molecule 1, and platelet endothelial cell adhesion molecule 1 expression when stimulated with Aa‐LPS or Aa‐HK. NF‐κB‐p65 activation was induced by all antigens. Aa‐induced IL‐6 and IL‐8 production was inhibited by rosuvastatin, particularly at higher doses. Interestingly, reduced IL‐6 and IL‐8 levels were observed in HCAECs stimulated with Aa in the presence of higher concentrations of rosuvastatin. This anti‐inflammatory effect correlated with a significant increase of rosuvastatin‐induced KLF2. Conclusions: These results suggest Aa‐induced proinflammatory endothelial responses are regulated by rosuvastatin in a mechanism that appears to involve KLF2 activation. Use of rosuvastatin to prevent cardiovascular disease may reduce risk of endothelial activation by bacterial antigens.  相似文献   

10.
Background: Inflammatory cytokines and matrix metalloproteinases (MMPs) produced by resident and inflammatory cells in response to periodontopathogens play a major role in the tissue destruction observed in periodontitis, which is a disease that affects tooth‐supporting structures. In the present study, we investigate the effects of licorice‐derived licoricidin (LC) and licorisoflavan A (LIA) on the secretion of various cytokines and MMPs by human monocyte‐derived macrophages stimulated with Aggregatibacter actinomycetemcomitans (previously Actinobacillus actinomycetemcomitans) lipopolysaccharide (LPS). Methods: Macrophages were treated with non‐toxic concentrations of LC or LIA before being stimulated with A. actinomycetemcomitans LPS. The secretion of cytokines and MMPs and the activation of nuclear factor‐kappa B (NF‐κB) p65 and activator protein (AP)‐1 were assessed by enzyme‐linked immunosorbent assays. Results: LC and LIA inhibited the secretion of interleukin (IL)‐6 and chemokine (C‐C motif) ligand 5 in a concentration‐dependent manner but did not affect the secretion of IL‐8 by LPS‐stimulated macrophages. LC and LIA also inhibited the secretion of MMP‐7, ‐8, and ‐9 by macrophages. The suppression of cytokine and MMP secretion by LC and LIA was associated with the reduced activation of NF‐κB p65 but not that of AP‐1. Conclusion: The present study suggests that LC and LIA have potential for the development of novel host‐modulating strategies for the treatment of cytokine and/or MMP‐mediated disorders such as periodontitis.  相似文献   

11.
12.
Tamai R, Kiyoura Y, Sugiyama A. Alendronate regulates cytokine production induced by lipid A through nuclear factor‐κB and Smad3 activation in human gingival fibroblasts. J Periodont Res 2011; 46: 13–20. © 2010 John Wiley & Sons A/S Background and Objective: Nitrogen‐containing bisphosphonates (NBPs) are widely used as anti‐bone‐resorptive drugs. However, use of NBPs results in inflammatory side‐effects, including jaw osteomyelitis. In the present study, we examined the effects of alendronate, a typical NBP, on cytokine production by human peripheral blood mononuclear cells (PBMCs) and gingival fibroblasts incubated with lipid A. Methods: The PBMCs and gingival fibroblasts were pretreated with or without alendronate for 24 h. Cells were then incubated in the presence or absence of lipid A for a further 24 h. Levels of secreted human interleukin (IL)‐1β, IL‐6, IL‐8 and monocyte chemoattractant protein‐1 (MCP‐1) in culture supernatants were measured by ELISA. We also examined nuclear factor‐κB (NF‐κB) activation in both types of cells by ELISA. Activation of Smad3 in the cells was assessed by flow cytometry. In addition, we performed an inhibition assay using SIS3, a specific inhibitor for Smad3. Results: Pretreatment of PBMCs with alendronate promoted lipid A‐induced production of IL‐1β and IL‐6, but decreased lipid A‐induced IL‐8 and MCP‐1 production. In human gingival fibroblasts, alendronate pretreatment increased lipid A‐induced production of IL‐6 and IL‐8, and increased NF‐κB activation in gingival fibroblasts but not PBMCs stimulated with lipid A. In contrast, alendronate activated Smad3 in both types of cells. Finally, SIS3 inhibited alendronate‐augmented IL‐6 and IL‐8 production by human gingival fibroblasts but up‐regulated alendronate‐decreased IL‐8 production by PBMCs. Conclusion: These results suggest that alendronate‐mediated changes in cytokine production by gingival fibroblasts occur via regulation of NF‐κB and Smad3 activity.  相似文献   

13.
14.
15.
We investigated the roles of peroxisome proliferator‐activated receptor δ (PPARδ) in Porphyromonas gingivalis‐derived lipopolysaccharide (Pg‐LPS)‐induced activation of matrix metalloproteinase 2 (MMP‐2). In human gingival fibroblasts (HGFs), activation of PPARδ by GW501516, a specific ligand of PPARδ, inhibited Pg‐LPS‐induced activation of MMP‐2 and generation of reactive oxygen species (ROS), which was associated with reduced expression of NADPH oxidase 4 (Nox4). These effects were significantly smaller in the presence of small interfering RNA targeting PPARδ or the specific PPARδ inhibitor GSK0660, indicating that PPARδ is involved in these events. In addition, modulation of Nox4 expression by small interfering RNA influenced the effect of PPARδ on MMP‐2 activity, suggesting a mechanism in which Nox4‐derived ROS modulates MMP‐2 activity. Furthermore, c‐Jun N‐terminal kinase and p38, but not extracellular signal‐regulated kinase, mediated PPARδ‐dependent inhibition of MMP‐2 activity in HGFs treated with Pg‐LPS. Concomitantly, PPARδ‐mediated inhibition of MMP‐2 activity was associated with the restoration of types I and III collagen to levels approaching those in HGFs not treated with Pg‐LPS. These results indicate that PPARδ‐mediated downregulation of Nox4 modulates cellular redox status, which in turn plays a critical role in extracellular matrix homeostasis through ROS‐dependent regulation of MMP‐2 activity.  相似文献   

16.
Song H, Zhao H, Qu Y, Sun Q, Zhang F, Du Z, Liang W, Qi Y, Yang P. Carbon monoxide releasing molecule‐3 inhibits concurrent tumor necrosis factor‐α‐ and interleukin‐1β‐induced expression of adhesion molecules on human gingival fibroblasts. J Periodont Res 2011; 46: 48–57. © 2010 John Wiley & Sons A/S Background and Objective: Carbon monoxide releasing molecule‐3 (CORM‐3) is a newly reported compound that has shown anti‐inflammatory effects in a number of cells. In this study, we aimed to investigate the influence of CORM‐3 on concurrent tumor necrosis factor‐α (TNF‐α)‐ and interleukin (IL)‐1β‐induced expression of adhesion molecules on human gingival fibroblasts (HGF). Material and Methods: HGF were cultured from the explants of normal gingival tissues. Cells were costimulated with TNF‐α and IL‐1β in the presence or absence of CORM‐3 for different periods of time. The expression of adhesion molecules, nuclear factor‐kappaB (NF‐κB) and phosphorylated p38 was studied using western blotting. RT‐PCR was applied to check the expression of the adhesion molecules at the mRNA level. The activity of NF‐κB was analysed using a reporter gene assay. Results: CORM‐3 inhibited the up‐regulation of intercellular adhesion molecule 1, vascular cell adhesion molecule 1 and endothelial leukocyte adhesion molecule in HGF after costimulation with TNF‐α and IL‐1β, which resulted in the decreased adhesion of peripheral blood mononuclear cells to these cells. Sustained activation of the NF‐κB pathway by costimulation with TNF‐α and IL‐1β was suppressed by CORM‐3, which was reflected by a reduced NF‐κB response element‐dependent luciferase activity and decreased nuclear NF‐κB‐p65 expression. CORM‐3 inhibited MAPK p38 phosphorylation in response to stimulation with proinflammatory cytokines. Conclusion: The results of this study bode well for the application of CORM‐3 as an anti‐inflammatory agent to inhibit NF‐κB activity and to suppress the expression of adhesion molecules on HGF, which suggests a promising potential for CORM‐3 in the treatment of inflammatory periodontal disease.  相似文献   

17.
18.
19.
Nakamura H, Ukai T, Yoshimura A, Kozuka Y, Yoshioka H, Yoshinaga Y, Abe Y, Hara Y. Green tea catechin inhibits lipopolysaccharide‐induced bone resorption in vivo. J Periodont Res 2009; doi: 10.1111/j.1600‐0765.2008.01198.x. © 2009 John Wiley & Sons A/S Background and Objective: Bone resorption is positively regulated by receptor activator of nuclear factor‐κB ligand (RANKL). Pro‐inflammatory cytokines, such as interleukin (IL)‐1β, promote RANKL expression by stromal cells and osteoblasts. Green tea catechin (GTC) has beneficial effects on human health and has been reported to inhibit osteoclast formation in an in vitro co‐culture system. However, there has been no investigation of the effect of GTC on periodontal bone resorption in vivo. We therefore investigated whether GTC has an inhibitory effect on lipopolysaccharide (LPS)‐induced bone resorption. Material and Methods: Escherichia coli (E. coli) LPS or LPS with GTC was injected a total of 10 times, once every 48 h, into the gingivae of BALB/c mice. Another group of mice, housed with free access to water containing GTC throughout the experimental period, were also injected with LPS in a similar manner. Results: The alveolar bone resorption and IL‐1β expression induced by LPS in gingival tissue were significantly decreased by injection or oral administration of GTC. Furthermore, when GTC was added to the medium, decreased responses to LPS were observed in CD14‐expressing Chinese hamster ovary (CHO) reporter cells, which express CD25 through LPS‐induced nuclear factor‐κB (NF‐κB) activation. These findings demonstrated that GTC inhibits nuclear translocation of NF‐κB activated by LPS. In addition, osteoclasts were generated from mouse bone marrow macrophages cultured in a medium containing RANKL and macrophage colony‐stimulating factor with or without GTC. The number of osteoclasts was decreased in dose‐dependent manner when GTC was added to the culture medium. Conclusion: These results suggest that GTC suppresses LPS‐induced bone resorption by inhibiting IL‐1β production or by directly inhibiting osteoclastogenesis.  相似文献   

20.
Zawawi KH, Kantarci A, Schulze‐Späte U, Fujita T, Batista EL Jr, Amar S, Van Dyke TE. Moesin‐induced signaling in response to lipopolysaccharide in macrophages. J Periodont Res 2010; 45: 589–601.©2010 John Wiley & Sons A/S Background and Objective: Many physiological and pathophysiological conditions are attributable in part to cytoskeletal regulation of cellular responses to signals. Moesin (membrane‐organizing extension spike protein), an ERM (ezrin, radixin and moesin) family member, is involved in lipopolysaccharide (LPS)‐mediated events in mononuclear phagocytes; however, its role in signaling is not fully understood. The aim of this study was to investigate the LPS‐induced moesin signaling pathways in macrophages. Material and Methods: Macrophages were stimulated with 500 ng/mL LPS in macrophage serum‐free medium. For blocking experiments, cells were pre‐incubated with anti‐moesin antibody. Moesin total protein and phosphorylation were studied with western blotting. Moesin mRNA was assessed using quantitative real‐time PCR. To explore binding of moesin to LPS, native polyacrylamide gel electrophoresis (PAGE) gel shift assay was performed. Moesin immunoprecipitation with CD14, MD‐2 and Toll‐like receptor 4 (TLR4) and co‐immunoprecipitation of MyD88–interleukin‐1 receptor‐associated kinase (IRAK) and IRAK–tumor necrosis factor receptor‐activated factor 6 (TRAF6) were analyzed. Phosphorylation of IRAK and activities of MAPK, nuclear factor κB (NF‐κB) and IκBα were studied. Tumor necrosis factor α, interleukin‐1β and interferon β were measured by ELISA. Results: Moesin was identified as part of a protein cluster that facilitates LPS recognition and results in the expression of proinflammatory cytokines. Lipopolysaccharide stimulates moesin expression and phosphorylation by binding directly to the moesin carboxyl‐terminus. Moesin is temporally associated with TLR4 and MD‐2 after LPS stimulation, while CD14 is continuously bound to moesin. Lipopolysaccharide‐induced signaling is transferred downstream to p38, p44/42 MAPK and NF‐κB activation. Blockage of moesin function interrupts the LPS response through an inhibition of MyD88, IRAK and TRAF6, negatively affecting subsequent activation of the MAP kinases (p38 and ERK), NF‐κB activation and translocation to the nucleus. Conclusion: These results suggest an important role for moesin in the innate immune response and TLR4‐mediated pattern recognition in periodontal disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号