首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, spin-locking techniques were added as a part of intermolecular multiple-quantum experiments, thereby introducing the concept of rotating-frame intermolecular double-quantum spin-lattice relaxation, T(1rho, DQC). A novel magnetic resonance imaging methodology based on intermolecular multiple-quantum coherences is demonstrated on a 7.05-T microimaging scanner. The results clearly reveal that the intermolecular double-quantum coherence T(1rho, DQC)-weighted imaging technique provides an alternative contrast mechanism to conventional imaging.  相似文献   

2.
Measurements of relaxation rates in the rotating frame with spin-locking techniques are sensitive to substances with exchanging protons with appropriate chemical shifts. The authors develop a novel approach to exchange-rate selective imaging based on measured T(1ρ) dispersion with applied locking field strength, and demonstrate the method on samples containing the X-ray contrast agent Iohexol with and without cross-linked bovine serum albumin. T(1ρ) dispersion of water in the phantoms was measured with a Varian 9.4-T magnet by an on-resonance spin-locking pulse with fast spin-echo readout, and the results used to estimate exchange rates. The Iohexol phantom alone gave a fitted exchange rate of ~1 kHz, bovine serum albumin alone was ~11 kHz, and in combination gave rates in between. By using these estimated rates, we demonstrate how a novel spin-locking imaging method may be used to enhance contrast due to the presence of a contrast agent whose protons have specific exchange rates.  相似文献   

3.
Delayed gadolinium-enhanced MRI of cartilage is a technique for studying the development of osteoarthritis using quantitative T(1) measurements. Three-dimensional variable flip angle is a promising method for performing such measurements rapidly, by using two successive spoiled gradient echo sequences with different excitation pulse flip angles. However, the three-dimensional variable flip angle method is very sensitive to inhomogeneities in the transmitted B(1) field in vivo. In this study, a method for correcting for such inhomogeneities, using an additional B(1) mapping spin-echo sequence, was evaluated. Phantom studies concluded that three-dimensional variable flip angle with B(1) correction calculates accurate T(1) values also in areas with high B(1) deviation. Retrospective analysis of in vivo hip delayed gadolinium-enhanced MRI of cartilage data from 40 subjects showed the difference between three-dimensional variable flip angle with and without B(1) correction to be generally two to three times higher at 3 T than at 1.5 T. In conclusion, the B(1) variations should always be taken into account, both at 1.5 T and at 3 T.  相似文献   

4.
In high-field MRI, RF flip angle inhomogeneity due to wavelength effects can lead to spatial variations in contrast and sensitivity. Improved flip angle homogeneity can be achieved through multidimensional excitation, but long RF pulse durations limit practical application. A recent approach to reduce RF pulse duration is based on parallel excitation through multiple RF channels. Here, an alternative approach to shorten multidimensional excitation is proposed that makes use of nonlinear spatial variations in the stationary (B(0)) magnetic field during a B(0)-sensitive excitation pulse. As initial demonstration, the method was applied to 2D gradient echo (GE) MRI of human brain at 7 T. Using B(0) shims with up to second-order spatial dependence, it is demonstrated that root-mean-squared flip angle variation can be reduced from 20 to 11% with RF pulse lengths that are practical for general GE imaging applications without requiring parallel excitation. The method is expected to improve contrast and sensitivity in GE MRI of human brain at high field.  相似文献   

5.
A radiofrequency (RF) excitation scheme is presented in which flip angle is encoded in the phase of the resulting excitation. This excitation is implemented with nonselective hard pulses, and is used to give flip angle maps over three‐dimensional volumes. This phase‐sensitive B1 mapping excitation can be combined with various acquisition methods such as gradient recalled echo (GRE) and echo‐planar (EP) readouts. Imaging time depends primarily on the readout method, and is roughly equivalent to the imaging time of conventional double‐angle techniques for three‐dimensional acquisition. The phase‐sensitive method allows imaging over a much wider range of flip angles than double‐angle methods. Phantom and in vivo results are presented comparing the phase‐sensitive method with the conventional double‐angle method, demonstrating the ability of the phase‐sensitive method to measure a wider range of flip angles than double‐angle methods. Magn Reson Med 60:889–894, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

6.
Delayed gadolinium‐enhanced MRI of cartilage is a technique, which involves T1 mapping to identify changes in the structural integrity of cartilage associated with osteoarthritis. Currently, the gold standard is 2D inversion recovery turbo spin echo, which suffers from long acquisition times and limited coverage. Three‐dimensional variable flip angle (VFA) is an alternate technique, which has been shown to be accurate when an estimate of T1 is available a priori. This study validates the variable flip angle method for delayed gadolinium‐enhanced MRI of cartilage of the femoro‐tibial knee cartilage. When amplitude of (excitation) radiofrequency field inhomogeneities were minimized using nonselective pulses and amplitude of (excitation) radiofrequency field correction using an additional acquisition of a amplitude of (excitation) radiofrequency field map, the accuracy of T1 measurements were improved, and slice‐to‐slice variations over the 3D volume were minimized. In conclusion, fast 3D T1 mapping using the variable flip angle method with amplitude of (excitation) radiofrequency field correction appears to be an efficient and accurate method for delayed gadolinium‐enhanced MRI of cartilage of the knee. Magn Reson Med, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
Proton T1p dispersion imaging is a recently described method for indirect detection of 17O. However, clinical implementation of this technique is hindered by the requirement for a high-amplitude spin-locking field (γB1 > 1 kHz) that exceeds current limitations in specific absorption rate (SAR). Here, a strategy is offered for circumventing high SAR in T1p dispersion imaging of 17O through the use of low-amplitude off-resonance spin-locking pulses (γB1 < 300 Hz). Proton spin-lattice relaxation times in the off-resonance rotating frame were measured in H217O-enriched tissue phantoms. On- and off-resonance T1p dispersion imaging was implemented at 2 T using a spin-locking preparatory pulse cluster appended to a standard spin-echo sequence. On- and off-resonance dispersion images exhibited similar 17O-based image contrast. Magnetization transfer effects did not depend on 17O concentration and had no effect on image contrast. In conclusion, off-resonance proton T1p dispersion imaging shows promise as a safe, sensitive technique for generating 17O-based T1p contrast without exceeding SAR limitations.  相似文献   

8.
For T(1rho) quantification, a three-dimensional (3D) acquisition is desired to obtain high-resolution images. Current 3D methods that use steady-state spoiled gradient-echo (SPGR) imaging suffer from high SAR, low signal-to-noise ratio (SNR), and the need for retrospective correction of contaminating T(1) effects. In this study, a novel 3D acquisition scheme-magnetization-prepared angle-modulated partitioned-k-space SPGR snapshots (3D MAPSS)-was developed and used to obtain in vivo T(1rho) maps. Transient signal evolving towards the steady-state were acquired in an interleaved segmented elliptical centric phase encoding order immediately after a T(1rho) magnetization preparation sequence. RF cycling was applied to eliminate the adverse impact of longitudinal relaxation on quantitative accuracy. A variable flip angle train was designed to provide a flat signal response to eliminate the filtering effect in k-space caused by transient signal evolution. Experiments in phantoms agreed well with results from simulation. The T(1rho) values were 42.4 +/- 5.2 ms in overall cartilage of healthy volunteers. The average coefficient-of-variation (CV) of mean T(1rho) values (N = 4) for overall cartilage was 1.6%, with regional CV ranging from 1.7% to 8.7%. The fitting errors using MAPSS were significantly lower (P < 0.05) than those using sequences without RF cycling and variable flip angles.  相似文献   

9.
PURPOSE: To quantify glycosaminoglycans (GAG) in intact bovine patellar cartilage using the proton spin-lock ratio imaging method. This approach exploits spin-lattice relaxation time in the rotating frame (T(1rho)) imaging and T(1rho) relaxivity (R(1rho)). MATERIALS AND METHODS: All the magnetic resonance imaging (MRI) experiments were performed on a 4-T whole-body GE Signa scanner (GEMS, Milwaukee, WI), and spectroscopy experiments of chondroitin sulfate (CS) phantoms were done on a 2-T custom-built spectrometer. A custom-built 11-cm-diameter transmit-receive birdcage coil, which was tuned to a proton frequency of 170 MHz, was employed for the imaging experiments. T(1rho) measurements were made using a fast spin echo (FSE) sequence pre-encoded with a three-pulse cluster consisting of two 90 degrees hard pulses separated by a low-power rectangle pulse for spin-locking. RESULTS: The methodology is first validated on CS phantoms and then used to quantify GAG content in intact bovine cartilage (N = 5). There is a good agreement between the GAG map calculated from the T(1rho) ratio imaging method (71 +/- 4%) and GAG measured from spectrophotometric assay (75 +/- 5%) in intact bovine tissue. CONCLUSION: We have demonstrated a proton spin-lock ratio imaging method to quantify absolute GAG distribution in the cartilage in a noninvasive and nondestructive manner.  相似文献   

10.
Attempts to optimize the magnetization transfer ratio (MTR) obtained from spoiled gradient echo MRI have focused on the properties of the magnetization transfer pulse. In particular, continuous‐wave models do not explicitly account for the effects of excitation and relaxation on the MTR. In this work, these were modeled by an approximation of free relaxation between the radiofrequency pulses and of an instantaneous saturation event describing the magnetization transfer pulse. An algebraic approximation of the signal equation can be obtained for short pulse repetition time and small flip angles. This greatly facilitated the mathematical treatment and understanding of the MTR. The influence of inhomogeneous radiofrequency fields could be readily incorporated. The model was verified on the human brain in vivo at 3 T by variation of flip angle and pulse repetition time. The corresponding range in MTR was similar to that observed by a 4‐fold increase of magnetization transfer pulse power. Choice of short pulse repetition time and larger flip angles improved the MTR contrast and reduced the influence of radiofrequency inhomogeneity. Optimal contrast is obtained around an MTR of 50%, and noise progression is reduced when a high reference signal is obtained. Magn Reson Med, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
A long-duration, low-power, off-resonance spin-locking pulse was incorporated into the COSY revamped by asymmetric z gradient-echo detection (CRAZED) pulse sequence in order to evaluate the effects of intermolecular double-quantum longitudinal relaxation in the tilted rotating frame (T1rho,DQ(eff)). This modified CRAZED sequence was followed by a standard fast spin-echo imaging sequence to form images with T1rho,DQ(eff)-weighted contrast. Imaging experiments were performed on an agarose-gel phantom and mouse-tail tissue at 600 MHz. Experimental results demonstrated the feasibility of imaging applications based on T1rho,DQ(eff) as a novel contrast mechanism, and showed that iDQC off-resonance longitudinal relaxation in the rotating frame T1rho,DQ(eff) is sensitive to the tilt angle theta and the effective spin-locking field omegae. Imaging based on T1rho,DQ(eff)) has reduced RF power deposition compared to on-resonance spin-locking, which is advantageous for human applications.  相似文献   

12.
In this work a method for considerably improving the signal‐to‐noise ratio (SNR) in T1 maps based on the variable flip angle approach is proposed, employing spoiled fast low angle shot (FLASH) echo‐planar imaging (EPI) hybrid sequences with two echoes per excitation. In phantom measurements it could be verified that the SNR improvement in the underlying images translated into an SNR increase in the T1 maps exceeding theoretical predictions. Even a hybrid sequence with an 18% shorter measurement time than a standard FLASH readout with identical spatial coverage and resolution yielded an SNR gain of 23% in the resulting T1 maps. Hybrid sequences with either identical measurement time (9:05 min) or bandwidth (9:30 min) yielded gains of 60% and 67%, respectively. These results could be confirmed by measurements on four healthy volunteers. The image quality of T1 maps based on hybrid sequences was excellent and the SNR improvement was clearly visible. The measured SNR gains in T1 maps were between 20% (shortest sequence, white matter) and 66% (sequence with identical bandwidth, gray matter). The resulting T1 values were comparable, with a slight tendency toward higher values in the hybrid sequences. In summary, without prolonging experiment durations the method proposed yields SNR gains that are commonly achieved by acquiring two averages. Magn Reson Med, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
A methodology is presented for the reduction of both systematic and random errors in T(1) determination using TAPIR, a Look-Locker-based fast T(1) mapping technique. The relations between various sequence parameters were carefully investigated in order to develop recipes for choosing optimal sequence parameters. Theoretical predictions for the optimal flip angle were verified experimentally. Inversion pulse imperfections were identified as the main source of systematic errors in T(1) determination with TAPIR. An effective remedy is demonstrated which includes extension of the measurement protocol to include a special sequence for mapping the inversion efficiency itself.  相似文献   

14.
To understand the various effects that influence actual flip angles, and correct for these effects, it is important to precisely quantify the MRI parameters (such as T1, T2, and perfusion). In this paper actual flip angle maps are calculated using a conventional gradient-echo (GRE) sequence with different radiofrequency (RF) pulse shapes (Gaussian, sinc, and truncated-sinc), slice-selection gradients, off-resonance excitations, and B0 field inhomogeneities. The experimental results demonstrate that RF pulse shapes significantly affect the flip angle distribution and calibration factors. Off-resonance RF excitations, B0 nonuniformities, and slice-selection gradients can lead to degradations in the signal intensities of the images used to map the flip angle, and potentially introduce a bias and increased variance in the measured flip angles.  相似文献   

15.
The double‐echo‐steady‐state (DESS) sequence generates two signal echoes that are characterized by a different contrast behavior. Based on these two contrasts, the underlying T2 can be calculated. For a flip‐angle of 90°, the calculated T2 becomes independent of T1, but with very low signal‐to‐noise ratio. In the present study, the estimation of cartilage T2, based on DESS with a reduced flip‐angle, was investigated, with the goal of optimizing SNR, and simultaneously minimizing the error in T2. This approach was validated in phantoms and on volunteers. T2 estimations based on DESS at different flip‐angles were compared with standard multiecho, spin‐echo T2. Furthermore, DESS‐T2 estimations were used in a volunteer and in an initial study on patients after cartilage repair of the knee. A flip‐angle of 33° was the best compromise for the combination of DESS‐T2 mapping and morphological imaging. For this flip angle, the Pearson correlation was 0.993 in the phantom study (~20% relative difference between SE‐T2 and DESS‐T2); and varied between 0.429 and 0.514 in the volunteer study. Measurements in patients showed comparable results for both techniques with regard to zonal assessment. This DESS‐T2 approach represents an opportunity to combine morphological and quantitative cartilage MRI in a rapid one‐step examination. Magn Reson Med, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
The ability of on-resonance T(1rho) (T(1rho)) and off-resonance T(1rho) (T(1rho)(off)) measurements to indicate acute cerebral ischemia in a rat model of transient middle cerebral artery (MCA) occlusion was investigated at 4.7 T. T(1rho) was determined with B(1) fields of 0.4, 0.8, and 1.6 G, and T(1rho)(off) with five offset frequencies ((Delta)omega) ranging from 0-7.5 kHz at B(1) of 0.4 G, yielding effective B(1) (B(eff)) from 0.4 to 1.8 G. Diffusion, T(1), and T(2) were also quantified. Both T(1rho) and T(1rho)(off) acquired with (Delta)(o)< 2.5 kHz showed positive contrast during the first hours of MCA occlusion in the ischemic tissue delineated by low diffusion. Interestingly, T(1rho)(off) contrast acquired with (Delta)omega > 2.5 kHz was clearly less sensitive to ischemic alterations, and developed with a delayed time course. This discrepancy is thought to be a consequence of the frequency dependency of cross-relaxation during irradiation with spin-lock pulses.  相似文献   

17.
Variable flip angle T1 mapping and actual flip‐angle imaging B1 mapping are widely used quantitative MRI methods employing radiofrequency spoiled gradient‐echo pulse sequences. Incomplete elimination of the transverse magnetization in these sequences has been found to be a critical source of T1 and B1 measurement errors. In this study, comprehensive theoretical analysis of spoiling‐related errors in variable flip angle and actual flip‐angle imaging methods was performed using the combined isochromat summation and diffusion propagator model and validated by phantom experiments. The key theoretical conclusion is that correct interpretation of spoiling phenomena in fast gradient‐echo sequences requires accurate consideration of the diffusion effect. A general strategy for improvement of T1 and B1 measurement accuracy was proposed based on the strong spoiling regimen, where diffusion‐modulated spatial averaging of isochromats becomes a dominant factor determining magnetization evolution. Practical implementation of strongly spoiled variable flip angle and actual flip‐angle imaging techniques requires sufficiently large spoiling gradient areas (AG) in combination with optimal radiofrequency phase increments (?0). Optimal regimens providing <2% relative T1 and B1 measurement errors in a variety of tissues were theoretically derived for prospective in vivo variable flip angle (pulse repetition time = 15–20 ms, AG = 280–450 mT·ms/m, ?0 = 169°) and actual flip‐angle imaging (pulse repetition time1/pulse repetition time2 = 20/100 ms, AG1/AG2 = 450/2250 mT·ms/m, ?0 = 39°) applications based on 25 mT/m maximal available gradient strength. Magn Reson Med 63:1610–1626, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
PURPOSE: To develop a T1rho-prepared, balanced gradient echo (b-GRE) pulse sequence for rapid three-dimensional (3D) T1rho relaxation mapping within the time constraints of a clinical exam (<10 minutes), examine the effect of acquisition on the measured T1rho relaxation time and optimize 3D T1rho pulse sequences for the knee joint and spine. MATERIALS AND METHODS: A pulse sequence consisting of inversion recovery-prepared, fat saturation, T1rho-preparation, and b-GRE image acquisition was used to obtain 3D volume coverage of the patellofemoral and tibiofemoral cartilage and lower lumbar spine. Multiple T1rho-weighted images at various contrast times (spin-lock pulse duration [TSL]) were used to construct a T1rho relaxation map in both phantoms and in the knee joint and spine in vivo. The transient signal decay during b-GRE image acquisition was corrected using a k-space filter. The T1rho-prepared b-GRE sequence was compared to a standard T1rho-prepared spin echo (SE) sequence and pulse sequence parameters were optimized numerically using the Bloch equations. RESULTS: The b-GRE transient signal decay was found to depend on the initial T1rho-preparation and the corresponding T1rho map was altered by variations in the point spread function with TSL. In a two compartment phantom, the steady state response was found to elevate T1rho from 91.4+/-6.5 to 293.8+/-31 and 66.9+/-3.5 to 661+/-207 with no change in the goodness-of-fit parameter R2. Phase encoding along the longest cartilage dimension and a transient signal decay k-space filter retained T1rho contrast. Measurement of T1rho using the T1rho-prepared b-GRE sequence matches standard T1rho-prepared SE in the medial patellar and lateral patellar cartilage compartments. T1rho-preparedb-GRE T1rho was found to have low interscan variability between four separate scans. Mean patellar cartilage T1rho was elevated compared to femoral and tibial cartilage T1rho. CONCLUSION: The T1rho-prepared b-GRE acquisition rapidly and reliably accelerates T1rho quantification of tissues offset partially by a TSL-dependent point spread function.  相似文献   

19.
Abdominal images at 3T acquired with fast spin echo (FSE) sequences often exhibit signal voids due to RF transmit field inhomogeneities. Theory suggests, however, that the repeated refocusing pulses of FSE are capable of maintaining signal even at reduced RF amplitudes if the magnetization is suitably prepared. Here we propose a modified excitation strategy for FSE that is more robust to transmit field inhomogeneities than conventional FSE. The new excitation approach replaces the standard 90 degrees excitation pulse with a discretely sampled hyperbolic secant pulse that creates a square wave longitudinal magnetization as a function of gradient and off-resonance induced phase shifts between the subsequent echoes of the FSE sequence. This pulse is followed by the conventional train of refocusing pulses except that the first few pulses increase from near zero to the desired refocusing amplitude. Simulations and in vivo results at 3T indicate preserved image quality and much greater robustness of this new sequence to nonuniform RF fields. This robustness comes at the cost of 20% reduction in signal when the RF field is uniform and increased motion sensitivity. This RF field-insensitive sequence may overcome challenges of body imaging at high field and in patients with ascites.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号