首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tillu DV  Gebhart GF  Sluka KA 《Pain》2008,136(3):331-339
The rostral ventromedial medulla (RVM) is involved in facilitation of spinal nociceptive processing and generation of hyperalgesia in inflammatory and neuropathic pain models. We hypothesized that the bilateral hyperalgesia that develops after repeated intramuscular injections of acidic saline is initiated and maintained by activation of descending facilitatory pathways from the RVM. Male Sprague-Dawley rats were implanted with intracerebral guide cannulae into the nucleus raphe magnus (NRM) or the nucleus gigantocellularis (Gi). Two injections of acidic saline into one gastrocnemius muscle 5 days apart lead to robust hyperalgesia after the second injection. Either ropivacaine (local anesthetic) or vehicle (control) was microinjected into the RVM prior to the first intramuscular acid injection, prior to the second injection, or 24h after the second injection. Mechanical withdrawal thresholds of the paw (von Frey filaments) and the muscle (tweezer) were measured before and 24h after induction of hyperalgesia. The withdrawal thresholds for both the paw (cutaneous secondary hyperalgesia) and muscle (primary hyperalgesia) were decreased 24h after the second intramuscular acid injection in the vehicle control groups. Administration of ropivacaine prior to the first intramuscular acid injection had no effect on development of either cutaneous or muscle hyperalgesia that develops after the second injection. However, neither cutaneous nor muscle hyperalgesia developed in the group treated with ropivacaine prior to the second intramuscular injection. Ropivacaine also significantly reversed the hyperalgesia in the group treated 24h after the second intramuscular acid injection. Thus, the RVM is critical for both the development and maintenance of hyperalgesia after muscle insult.  相似文献   

2.
The putative antinociceptive properties of a commercially available polymeric membrane dressing were tested by using a hind limb penetrating stab wound model in which secondary hyperalgesia could be evaluated from the hind paw. We examined the responses to mechanical and thermal stimuli applied to the hind paw remote to 2 small penetrating stab wounds of the calf. Application of the polymeric membrane dressing, but not gauze dressing, significantly reduced the development of both mechanical and thermal hyperalgesia induced by the penetrating stab wounds. In addition, animals with stab wounds showed a significant decrease in cage activity, and this decrease was prevented by application of the polymeric dressing. Analysis of spinal cord Fos expression demonstrated that the polymeric membrane, but not gauze, dressing significantly decreased stab wound-induced Fos expression in laminae I to VI of the ipsilateral L3-L5 cord segments. In addition, application of the polymeric membrane, but not gauze, dressing to the hind limb of na?ve animals elicited Fos expression in laminae III and IV of the lumbar spinal cord. The data indicate that this model might be useful for evaluation of the mechanisms underlying deep tissue injury-induced secondary hyperalgesia, but they also demonstrate that the polymeric membrane dressing tested is capable of significantly reducing secondary hyperalgesia. PERSPECTIVE: Surgery and other types of penetrating wounds cause pain that is not always relieved by opioids and/or less potent analgesics. The present results suggest that the polymeric membrane dressing tested here may be used alone or in conjunction with analgesics to relieve pain caused by penetrating tissue injury.  相似文献   

3.
This article reports the development of a new hind limb pain model in which an incisional stab wound is placed on the front and back of the calf, causing both superficial and deep tissue injury. The injury causes primary mechanical hyperalgesia on the calf and secondary hind paw hyperalgesia, which served as the focus of the present study. Animals with unilateral stab wounds showed a significant increase in percent paw withdrawal (secondary mechanical hyperalgesia, reversed by morphine administration) from 2 to 48 hours after surgery, but no evidence of thermal hyperalgesia. In contrast, animals with bilateral leg injuries showed bilateral secondary mechanical and thermal hyperalgesia. Rats with unilateral leg incisional stab wounds showed a significant decrease in cage activity in both the horizontal and vertical directions, monitored by using a novel activity box approach, as compared to their 24-hour baseline levels or to the activity of na?ve animals. Analysis of spinal cord Fos labeling demonstrated that calf injury significantly increased Fos expression in laminae I to VI of the L3-L5 cord segments. The data indicate that this model might be useful for evaluation of the mechanisms underlying penetrating injury-induced primary and secondary hyperalgesia or for testing the effect of analgesics on hyperalgesia induced by such injury. PERSPECTIVE: Stab wounds and other types of penetrating wounds routinely encountered in emergency rooms and clinics are accompanied by pain associated with superficial and deep tissue injury. Here we present a rodent stab wound model that affords an opportunity to study the mechanisms of pain associated with traumatic injury.  相似文献   

4.
Pregabalin is used for treatment of neuropathic pain conditions. The present study evaluated effects of pregabalin in 2 rat models of muscle-induced hyperalgesia: Inflammatory and noninflammatory. Muscle hyperalgesia (withdrawal threshold to compression of the muscle) and cutaneous hyperalgesia of the paw (withdrawal threshold to von Frey filaments) were measured before and after induction of hyperalgesia and after treatment with pregabalin (saline, 10 to 100 mg/kg i.p.). In the inflammatory model, 3% carrageenan injected into 1 gastrocnemius muscle decreased the mechanical withdrawal threshold of the paw bilaterally and the compression withdrawal threshold of the muscle ipsilaterally 2 weeks later. Pregabalin (10 to 100 mg/kg) increased the compression withdrawal threshold of the inflamed muscle when compared with vehicle controls. Pregabalin also increased the mechanical withdrawal threshold of the paw bilaterally, but only with 100 mg/kg. In the noninflammatory model, 2 unilateral injections of acidic saline into the gastrocnemius muscle produced bilateral cutaneous and muscle hyperalgesia 24 hours after the second injection. Pregabalin (10 to 100 mg/kg i.p.) significantly increased the compression withdrawal thresholds of the muscle and the mechanical withdrawal threshold of the paw bilaterally when compared with vehicle. However, pregabalin also has significant motor effects at the higher doses (60 to 100 mg/kg). Therefore, pregabalin reduces both muscle and cutaneous hyperalgesia that occurs after muscle insult in 2 animal models of muscle pain at doses that do not produce ataxia. PERSPECTIVE: This study shows that pregabalin reduces both cutaneous and muscle hyperalgesia in inflammatory and noninflammatory models of muscle pain. Thus, pregabalin may be an effective treatment for people with chronic muscle pain.  相似文献   

5.
Sluka KA  Price MP  Breese NM  Stucky CL  Wemmie JA  Welsh MJ 《Pain》2003,106(3):229-239
Clinically, chronic pain and hyperalgesia induced by muscle injury are disabling and difficult to treat. Cellular and molecular mechanisms underlying chronic muscle-induced hyperalgesia are not well understood. For this reason, we developed an animal model where repeated injections of acidic saline into one gastrocnemius muscle produce bilateral, long-lasting mechanical hypersensitivity of the paw (i.e. hyperalgesia) without associated tissue damage. Since acid sensing ion channels (ASICs) are found on primary afferent fibers and respond to decreases in pH, we tested the hypothesis that ASICs on primary afferent fibers innervating muscle are critical to development of hyperalgesia and central sensitization in response to repeated intramuscular acid. Dorsal root ganglion neurons innervating muscle express ASIC3 and respond to acidic pH with fast, transient inward and sustained currents that resemble those of ASICs. Mechanical hyperalgesia produced by repeated intramuscular acid injections is prevented by prior treatment of the muscle with the non-selective ASIC antagonist, amiloride, suggesting ASICs might be involved. ASIC3 knockouts do not develop mechanical hyperalgesia to repeated intramuscular acid injection when compared to wildtype littermates. In contrast, ASIC1 knockouts develop hyperalgesia similar to their wildtype littermates. Extracellular recordings of spinal wide dynamic range (WDR) neurons from wildtype mice show an expansion of the receptive field to include the contralateral paw, an increased response to von Frey filaments applied to the paw both ipsilaterally and contralaterally, and increased response to noxious pinch contralaterally after the second intramuscular acid injection. These changes in WDR neurons do not occur in ASIC3 knockouts. Thus, activation of ASIC3s on muscle afferents is required for development of mechanical hyperalgesia and central sensitization that normally occurs in response to repeated intramuscular acid. Therefore, interfering with ASIC3 might be of benefit in treatment or prevention of chronic hyperalgesia.  相似文献   

6.
It is not known if a cytokine cascade develops during muscle inflammation and whether cytokines contribute to muscle inflammatory pain. We measured plasma and tissue cytokine concentrations, and behavioral responses to noxious mechanical stimuli, after inducing inflammation in the gastrocnemius muscle and the hind paw of rats. Tissue and plasma samples were taken 3, 6, or 24 h after carrageenan or saline injection into one of the 2 sites. Tumor necrosis factor alpha (TNF-alpha), interleukin (IL)-1beta, IL-6, and cytokine-induced neutrophil chemoattractant 1 (CINC-1) concentrations were measured. Hyperalgesia was present 3 h after carrageenan injection into the hind paw and muscle. The TNF-alpha was elevated significantly in the inflamed hind paw tissue (P < .001) but not in inflamed muscle tissue. IL-1beta was elevated 6 h after carrageenan injection in the hind paw tissue but only 24 h in the muscle tissue (P < .001). The IL-6 was elevated 3 h after injection in the hind paw tissue but only after 6 h in the muscle tissue (P < .01). The CINC-1 in plasma, muscle, and hind paw was elevated from 3 h to 24 h after carrageenan injection (P < .01). The release of IL-1beta and IL-6, known to mediate hyperalgesia elsewhere, is delayed in muscle inflammation compared with cutaneous inflammation, whereas TNF-alpha is not elevated during muscle inflammation. PERSPECTIVE: The quality and mechanisms of muscle pain are different from that of cutaneous pain. So too is the pattern of cytokine release during inflammation. Inhibiting TNF-alpha is unlikely to be effective in managing inflammatory muscle pain, but other cytokines, notably IL-1beta and CINC-1, may prove useful therapeutic targets.  相似文献   

7.
This study examined the effect of electro-acupuncture (EA) on persistent inflammatory hyperalgesia in a rat model. Inflammation and hyperalgesia were induced by injecting complete Freund's adjuvant (CFA) into one hindpaw of the rat. Hyperalgesia was determined by a decrease in paw withdrawal latencies (PWL) to a noxious thermal stimulus. EA was applied bilaterally at the acupuncture point Huantiao (G30) at the rat's hindlimbs. EA-treated rats (n = 11) had significantly longer PWLs as compared with placebo control rats (n = 7) in the inflamed paw at 2.5 hours and 5 days after injection of CFA (P <.05) and longer PWLs as compared to sham control rats (n = 9) at 2.5 hours (P >.05). Paw edema was significantly reduced in EA-treated rats versus placebo controls at 24 hours after inflammation (P <.01). Inflammation-induced spinal Fos expression in the medial half of laminae I-II in EA-treated rats versus placebo rats (n = 5 per group) was significantly reduced (P <.01). These data showed that EA delayed the onset and facilitated the recovery of inflammatory hyperalgesia and suppressed the inflammation-induced spinal Fos expression in neurons (laminae I-II) involved in receiving noxious stimulation. This rat model of persistent pain and inflammation seems to be an ideal animal model for studying the effect of acupuncture.  相似文献   

8.
Repeated injections of acidic saline into the gastrocnemius muscle induce both muscle and cutaneous hypersensitivity. We have previously shown that microinjection of local anesthetic into either the rostral ventromedial medulla (RVM) or the nucleus reticularis gigantocellularis (NGC) reverses this muscle and cutaneous hypersensitivity. Although prior studies show that NMDA receptors in the RVM play a clear role in mediating visceral and inflammatory hypersensitivity, the role of NMDA receptors in the NGC or in noninflammatory muscle pain is unclear. Therefore, the present study evaluated involvement of the NMDA receptors in the RVM and NGC in muscle and cutaneous hypersensitivity induced by repeated intramuscular injections of acidic saline. Repeated intramuscular injections of acidic saline, 5 days apart, resulted in a bilateral decrease in the withdrawal thresholds of the paw and muscle in all groups 24 hours after the second injection. Microinjection of NMDA receptor antagonists into the RVM reversed both the muscle and cutaneous hypersensitivity. However, microinjection of NMDA receptor antagonists into the NGC only reversed cutaneous but not muscle hypersensitivity. These results suggest that NMDA receptors in the RVM mediate both muscle and cutaneous hypersensitivity, but those in the NGC mediate only cutaneous hypersensitivity after muscle insult.PerspectiveThe current study shows that NMDA receptors in supraspinal facilitatory sites maintain noninflammatory muscle pain. Clinical studies in people with chronic widespread, noninflammatory pain, similarly, show alterations in central excitability. Thus, understanding mechanisms in an animal model could lead to improved treatment for patients with chronic muscle pain.  相似文献   

9.
The formalin test is commonly used as a model of persistent pain. Besides producing pain behavior, hind paw formalin injection induces the expression of the immediate-early gene, c-fos. A current controversy is whether noxious stimulus-induced Fos protein immunoreactivity can be considered a proxy (biomarker) of nociception in the spinal cord. We investigated this issue by exploiting our recent demonstration of genotype-dependent behavioral differences in response to formalin injection among inbred mouse strains. Accordingly, 6 inbred and 2 outbred strains were administered formalin (5% in 25 microL) into the ventral hind paw, monitored for licking behavior, and then sacrificed at 90 minutes after injection for Fos protein immunocytochemistry. Significant strain differences were observed in both licking behavior and Fos counts in superficial and deep laminae. We observed a significant correlation among strains between licking behavior in the late phase (10 to 60 minutes) of the formalin test and Fos expression in laminae V-VI (but not laminae I-II) of the dorsal horn (r = 0.94). These findings reinforce the use of the Fos technique to study the neuronal processing underlying pain but suggest that Fos labeling reliably reflects tonic pain behavior only in neurons located in the neck of the dorsal horn in mice.  相似文献   

10.
Skyba DA  Lisi TL  Sluka KA 《Pain》2005,119(1-3):142-149
Chronic muscle pain is common and often difficult to treat. In this study, we further characterize a model of chronic muscle pain induced by repeated intramuscular injection of acidic saline. Two injections of acid into muscle separated by 5 days result in secondary mechanical hyperalgesia that lasts for up to 4 weeks. Blockade of spinal NMDA receptors prior to the second injection intramuscular acid injection delays the onset of hyperalgesia, where as the maintenance phase of hyperalgesia, evaluated 1 week after the second intramuscular injection, is dependent on activation of spinal AMPA/kainate and NMDA receptors. In order to determine if behavioral hyperalgesia and glutamate receptor involvement are associated with increased concentrations of excitatory amino acids (EAA), we utilized microdialysis to evaluate extracellular glutamate and aspartate concentrations in the spinal dorsal horn during the first and second intramuscular acid injections, and 1 week after the development of mechanical hyperalgesia. The second intramuscular injection evoked a calcium-dependent increase in both spinal glutamate and aspartate concentrations. Glutamate concentrations within the dorsal horn were also increased 1 week after the second acid injection. Our data suggest increased release of spinal EAAs in the dorsal horn contributes to the development and maintenance of hyperalgesia.  相似文献   

11.
Administration of the neurotrophin nerve growth factor (NGF) to rats and humans has been shown to induce both thermal and mechanical hyperalgesia and is used as a model of inflammatory pain. Here we describe a mouse model of secondary hyperalgesia after NGF application. NGF was injected into the biceps femoris muscle unilaterally, and at various intervals afterwards the electromyographic (EMG) activity from the same muscle was recorded in response to mechanical von Frey hair stimulation of the plantar surface of the hind paw in isoflurane-anesthetized mice. Secondary cutaneous hyperalgesia in the hind paw reached a peak 60 minutes after injection and returned to baseline levels after an additional 60 minutes. This was followed by a second increase in EMG magnitude at 24 hours after injection that was still present after 5 days. The effects of NGF were dose-dependent, and a dose of 2 microg/g NGF had the maximal observed effect. No increase in EMG magnitude occurred on the untreated side. This study describes a quantitative mouse model of prolonged secondary cutaneous hyperalgesia after NGF-induced muscle inflammation that can be used for genetic manipulations of putative central molecular pathways that underlie secondary hyperalgesia. PERSPECTIVE: This study describes the development of a novel model of NGF-induced secondary hyperalgesia. The development of this model will allow further investigations into the processes that underlie the development of secondary hyperalgesia and pain associated with the musculature.  相似文献   

12.
While occupational exposure to vibration is a common cause of acute and chronic musculoskeletal pain, eliminating exposure produces limited symptomatic improvement, and reexposure precipitates rapid recurrence or exacerbation. To evaluate mechanisms underlying these pain syndromes, we have developed a model in the rat, in which exposure to vibration (60–80Hz) induces, in skeletal muscle, both acute mechanical hyperalgesia as well as long-term changes characterized by enhanced hyperalgesia to a proinflammatory cytokine or reexposure to vibration. Exposure of a hind limb to vibration-produced mechanical hyperalgesia measured in the gastrocnemius muscle of the exposed hind limb, which persisted for ~2 weeks. When nociceptive thresholds had returned to baseline, exposure to a proinflammatory cytokine or reexposure to vibration produced markedly prolonged hyperalgesia. The chronic prolongation of vibration- and cytokine-hyperalgesia was prevented by spinal intrathecal injection of oligodeoxynucleotide (ODN) antisense to protein kinase Cε, a second messenger in nociceptors implicated in the induction and maintenance of chronic pain. Vibration-induced hyperalgesia was inhibited by spinal intrathecal administration of ODN antisense to receptors for the type-1 tumor necrosis factor-α (TNFα) receptor. Finally, in TNFα-pretreated muscle, subsequent vibration-induced hyperalgesia was markedly prolonged.PerspectiveThese studies establish a model of vibration-induced acute and chronic musculoskeletal pain, and identify the proinflammatory cytokine TNFα and the second messenger protein kinase Cε as targets against which therapies might be directed to prevent and/or treat this common and very debilitating chronic pain syndrome.  相似文献   

13.
Villarreal CF  Del Bel EA  Prado WA 《Pain》2003,103(1-2):163-174
The anterior pretectal nucleus (APtN) participates in nociceptive processing and in the activation of central descending mechanisms of pain control. In this study we used behavioral tests (incisional pain and carrageenan-induced inflammatory pain) and c-Fos expression changes to examine the involvement of the APtN in the control of persistent pain in rats. A 1cm longitudinal incision through the skin and fascia of the plantar region (large incision), or a 0.5cm longitudinal incision through the skin only (small incision) was used, and the postoperative incisional allodynia was evaluated with von Frey filaments. The hyperalgesia produced by the intraplantar administration of carrageenan (25 or 50 microg/100 microl) into a hind paw was evaluated by a modified paw pressure test. The electrolytic lesion of the contralateral, but not ipsilateral, APtN significantly intensified the allodynia produced by a large incision of the hind paw. The incisional allodynia and the carrageenan-induced hyperalgesia were intensified by the microinjection of 2% lidocaine into the contralateral, but not ipsilateral APtN, the effect being significantly stronger when a large incision or a higher carrageenan concentration was utilized. A significant increase in the number of c-Fos positive cells was found in the ipsilateral, and mainly in the contralateral APtN of rats submitted to a large incision. The number of positive cells in the superficial or deep laminae of the contralateral spinal cord of control and incised rats was not significantly different. Positive cells in the superficial or deep laminae of the ipsilateral spinal cord were significantly more numerous than in control, the effect being significantly more intense in rats with large incision. The microinjection of 0.5% bupivacaine into the APtN contralateral to the incised hind paw reduced the number of positive cells bilaterally in the APtN, but the effect was significant in the contralateral nucleus only. The number of positive cells in the superficial and deep laminae of the contralateral spinal cord of incised and non-incised animals was not significantly changed by the neural block of the contralateral APtN. In the ipsilateral spinal cord, the incision-induced increase in the number of positive cells was significantly reduced in the superficial lamina and significantly increased in the deep lamina of animals previously treated with bupivacaine in the contralateral APtN. In conclusion, the integrity of the APtN is necessary to reduce the severity of the responses to persistent injury. The results also are in agreement with the current notion that persistent noxious inputs to the APtN tonically activate a descending mechanism that excites superficial cells and inhibits deep cells in the spinal dorsal horn.  相似文献   

14.
Heme oxygenase (HO) catalyzes the conversion of heme to biliverdin, iron, and carbon monoxide. Recent studies have demonstrated that inhibitors of HO are analgesic in a number of different pain models. In these studies we attempted to define the role of HO type 2 (HO-2) in the development of chronic inflammatory and neuropathic pain. To do this both wild type and C57Bl/6 HO-2 null mutant mice were either injected with complete Freund[apos ]s adjuvant in 1 hind paw or underwent unilateral partial sciatic nerve ligation. The resulting thermal hyperalgesia and mechanical allodynia were monitored for up to 14 days afterward. In both models of chronic pain it was observed that the extent of hyperalgesia and allodynia was significantly less for the HO-2 null mutants than the wild type mice. Additional studies quantified spinal cord dorsal horn Fos expression after brushing of the affected hind paw for both complete Freund[apos ]s adjuvant and partial sciatic nerve ligation treated mice. These studies showed that HO-2 null mutants had less Fos expression after stimulation by brushing than did their wild type counterparts. Our results indicate that HO-2 participates in the thermal hyperalgesia and mechanical allodynia that occur in 2 commonly used models of chronic inflammatory and neuropathic pain.  相似文献   

15.
Zhang YQ  Ji GC  Wu GC  Zhao ZQ 《Pain》2002,99(3):525-535
The interaction between electroacupuncture and an N-methyl-D-aspartic acid (NMDA) receptor antagonist, (DL-2-amino-5-phosphonopentanoic acid; AP5), or an (+/-)-alpha-Amino-3-hydroxy-5-methylisoxazole-4-propionic acid/kainite (AMPA/KA) receptor antagonist, (6,7-dinitroquinoxaline-2,3 (1H,4H); DNQX) administered intrathecally on carrageenan-induced thermal hyperalgesia and spinal c-Fos expression was investigated. The latency of paw withdrawal (PWL) from a thermal stimulus was used as a measure of hyperalgesia in awake rats. Intrathecal (i.t.) injection of 1 and 10 nmol AP5, but not DNQX, markedly increased the PWL of the carrageenan-injected paw. At a dose of 100 nmol, either AP5 or DNQX significantly increased the PWL of carrageenan-injected paw, with AP5 being more potent. The PWLs of the non-injected and normal saline (NS)-injected paws were not detectably affected by the administration of NMDA or AMPA/KA receptor antagonists at the doses tested. Unilateral electroacupuncture stimulation of the 'Zu-San-Li' (St 36) and 'Kun-Lun' (UB 60) acupuncture points (60 and 2 Hz alternately, 1-2-3 mA) contralateral to the carrageenan-injected paw significantly elevated the PWLs of carrageenan- and NS-injected paws. Although neither i.t. injection of 0.1 nmol AP5 nor 1 nmol DNQX alone had an effect on the PWL of the carrageenan- and NS-injected paws, both significantly potentiated electroacupuncture-induced analgesia in carrageenan-injected rats, especially 0.1 nmol AP5. Fos expression evoked by intraplantar (i.pl.) injection of carrageenan was examined in the spinal cord with immunohistochemical methods. Three hours after i.pl. injection of carrageenan, the number of Fos-like immunoreactive (Fos-LI) neurons was significantly increased in all the layers of the ipsilateral spinal cord at L(4-5), with the highest density in laminae I-II and V-VI. Intrathecally pre-administered AP5 (10 nmol) or DNQX (100 nmol) significantly reduced the total number of carrageenan-induced Fos-LI neurons. The reduction was most apparent in laminae I-II and IV-V. Similarly, following bilateral electroacupuncture stimulation of the 'Zu-San-Li' and 'Kun-Lun' acupuncture points, the numbers of carrageenan-induced Fos-LI neurons in laminae I-II and V-VI were also markedly reduced. When a combination of electroacupuncture with 10 nmol AP5 or 100 nmol DNQX was used, the level of Fos expression in the spinal cord induced by carrageenan was significantly lower than electroacupuncture or i.t. injection of AP5 or DNQX alone. These results demonstrate that electroacupuncture and NMDA or AMPA/KA receptor antagonists have a synergetic anti-nociceptive action against inflammatory pain. Furthermore, this study supports the idea that both NMDA and AMPA/KA receptors are involved in spinal nociceptive transmission in carrageenan-inflamed rats, with the former more preferentially mediating transmission of nociceptive information from cutaneous tissue.  相似文献   

16.
Experimental evidence suggests that release of neurotransmitters in response to acute noxious stimulation and inflammation can differ in superficial and deeper dorsal horn (DH) laminae. Using two different microdialysis probes, we studied changes in levels of glutamate, aspartate, arginine and GABA in dialysates collected from the surface of the spinal cord and within the DH induced by pinching the paw or paw inflammation. In penthotal anaesthetized rats, a flexible microdialysis probe was placed on the dorsal surface of the L4-L5 or L6-S2 spinal segments. In other rats, a rigid microdialysis probe was implanted within the DH of the same segments. Samples were collected every minute before, during and after pinching the hind paw (acute pain), and every half an hour after injecting either carrageenan or saline into the same paw (inflammation-induced pain). Amino acids were measured by capillary zone electrophoresis with laser-induced fluorescence detection (CZE-LIFD). Pinching the paw induced a significant but short lasting increase in extracellular glutamate and aspartate in dialysates from the surface of the DH. Carrageenan, but not saline, injected into the paw significantly increased concentrations of glutamate, aspartate and arginine both on the surface and within the DH of L4-L5 and also within the DH of the L6-S2 segments. The GABA level was significantly increased following carrageenan only within the DH. The maximum increase on the surface was detected 60-120 min after the onset of inflammation whereas the response within the DH reached a maximum between 150 and 180 min after carrageenan. These results indicate that unlike acute mechanical noxious stimulation which enhances amino acid neurotransmitters in surface dialysate, inflammation induced neurotransmitter release in all layers of the DH suggesting sensitization of the DH.  相似文献   

17.
Perfusion of the mechanically compressed lumbar ganglion with lidocaine reduces mechanical hyperalgesia and allodynia in the rat. (University of Arkansas for Medical Sciences, Little Rock, AR) J Neurophysiol 2000;84:798–805. This study used an animal model of lumbar radiculopathy to investigate the neurological mechanisms of cutaneous hyperalgesia and tactile allodynia. The rat L5 dorsal root ganglion (DRG) was chronically compressed by inserting a hollow perforated rod into the intervertebral foramen. The DRG was constantly perfused through the hollow rod with either lidocaine or normal saline delivered by a subcutaneous osmotic pump. Behavioral evidence for neuropathic pain after DRG compression involved measuring the incidence of hindlimb withdrawals to both punctate indentations of the hind paw with mechanical probes exerting different bending forces and to light stroking of the hind paw with a cotton wisp. Behavioral results showed that for saline‐treated control rats: the withdrawal thresholds for the ipsilateral and contralateral paws to mechanical stimuli decreased significantly after surgery and the incidence of foot withdrawal to light stroking significantly increased on both ipsilateral and contralateral hind paws. Local perfusion of the compressed DRG with 2% lidocaine for 7 days at a low flow‐rate (1 μl/h), or for 1 day at a high flow‐rate (8 μl/h) partially reduced the decrease in the withdrawal thresholds on the ipsilateral foot, but did not affect the contralateral foot. The incidence of foot withdrawal in response to light stroking with a cotton wisp decreased significantly on the ipsilateral foot and was completely abolished on the contralateral foot in the lidocaine treatment groups. Conclude that compression of the L5 DRG induced central pain syndrome that included bilateral mechanical hyperalgesia and tactile allodynia. Results also suggest that a lidocaine block, or a reduction in abnormal activity from the compressed ganglia to the spinal cord, could partially reduce mechanical hyperalgesia and tactile allodynia. Comments by Marshall Devor, PhD. Tonic compression of the dorsal root ganglion (DRG) in animal preparations, and presumably also in man, causes sensory cells to become electrically hyperexcitable. The resulting spontaneous discharge is a cause of ongoing paresthesias and pain. Many believe that in addition, this ectopic activity can trigger and maintain central sensitization in the spinal cord, resulting in tactile hypersensitivity (allodynia and hyperalgesia) in the body parts innervated by the ganglion. This second effect of ectopic DRG activity, however, is controversial. Zhang and collaborators now provide strong new support for this idea by showing that lidocaine infusion into the DRG, with consequent block of the ectopic DRG firing, considerably reduces allodynia and hyperalgesia for the duration of the infusion (weeks). Here is a novel therapeutic approach that deserves a try.  相似文献   

18.
Chronic muscle pain is a major clinical problem that is often associated with fatigue. Conversely, chronic fatigue conditions are commonly associated with muscle pain. We tested the hypothesis that muscle fatigue enhances hyperalgesia associated with injection of acidic saline into muscle. We evaluated mechanical sensitivity of the paw (von Frey) in mice after 2 intramuscular injections of saline (20 microL; pH 4, pH 5, pH 6, pH 7.2) in a fatigue and a control group. To induce fatigue, mice were run for 2 h/day for 2 days prior to the first injection and 2 h/day for 2 days prior to the second injection. Muscle lactate, pCO(2), pO(2), creatinine kinase, phosphate, and histology were examined after the fatigue task and compared to a control group. Grip force was significantly decreased after 2 h of running indicating fatigue. The fatigue task did not induce muscle damage as there was no difference in muscle lactate, pCO(2), pO(2), creatinine kinase, phosphate, or histology. The fatigue task altered the dose-response relationship to intramuscular acidic saline injections. Mechanical hyperalgesia was observed in both fatigue and control groups after intramuscular injection of pH 4.0, but only the fatigue group after injection of pH 5. Neither the fatigue nor the control group developed hyperalgesia in response to intramuscular injection of pH 6 or pH 7.2. In conclusion, fatigue modified the susceptibility of mice to acid injection of pH 5.0 to result in mechanical hyperalgesia after 2 injections of pH 5.0. The fatigue task did not produce measurable changes in the muscle tissue suggesting a central mechanism mediating the enhancement of hyperalgesia. PERSPECTIVE: These data therefore show that muscle fatigue can enhance the likelihood that one develops pain to a mild insult. Clinically, this could relate to the development of pain from such conditions as repetitive strain injury, and may relate to the interrelationship between chronic pain and fatigue.  相似文献   

19.
目的:观察大鼠腰5脊神经和脊神经根不同部位损伤对诱导神经病理性疼痛的不同作用。方法:采用腰5脊神经结扎加切断(lumbar5 spinal nerve ligation,L5 SNL)、腰5前根切除(lumbar5 ventral rhizotomy,L5 VR)和腰5背根切除(lumbar5 dorsal rhizotomy,L5 DR)诱导大鼠痛觉过敏,结合痛行为学测试观察病理性疼痛的发展过程。结果:(1)L5SNL可引起大鼠病理性疼痛。双侧后肢50%撤足阈值(paw withdrawal threshold,PWT)和撤足潜伏期(paw withdrawal latency,PWL)于术后1d明显下降,痛觉过敏的症状,在同侧后肢持续了5周,在对侧后肢也保持3周。(2)L5 VR也可诱导大鼠产生病理性疼痛。双侧后肢50%PWT和PWL于术后1d明显降低,并维持到了术后第5周。(3)L5DR没有引起大鼠产生痛觉过敏症状。与术前基础值和假手术组比较,L5DR后50%PWT和PWL均无明显变化。结论:选择性损伤运动纤维和损伤脊神经均能诱导大鼠产生病理性疼痛,但脊神经背根损伤不引起痛觉过敏。  相似文献   

20.
Inflammatory thermal hyperalgesia is principally mediated through transient receptor potential vanilloid 1 (TRPV1) channels, as demonstrated by prior studies using models of cutaneous inflammation. Muscle pain is significantly different from cutaneous pain, and the involvement of TRPV1 in hyperalgesia induced by muscle inflammation is unknown. We tested whether TRPV1 contributes to the development of mechanical and heat hypersensitivity of the paw in TRPV1(-/-) mice after muscle inflammation. Because TRPV1(-/-) mice lack TRPV1 at the site of inflammation (muscle) and at the testing site (paw), we do not know whether TRPV1 is important as a mediator of nociceptor sensitization in the muscle or as a heat sensor in the paw. Using recombinant herpesviruses, we reexpressed TRPV1 in TRPV1(-/-) mice in primary afferents innervating skin, muscle, or both to determine which sites were important for the behavioral deficits. Responses to repeated application of noxious mechanical stimuli to the hind paw were enhanced in TRPV1(-/-) mice; this was restored by reexpression of TRPV1 into skin. Withdrawal latencies to noxious heat were increased in TRPV1(-/-) mice; normal latencies were restored by reexpression of TRPV1 in both skin and muscle. Heat hypersensitivity induced by muscle inflammation did not develop in TRPV1(-/-) mice; mechanical hypersensitivity was similar between TRPV1(-/-) and TRPV1(+/+) mice. Heat hypersensitivity induced by muscle inflammation was restored by reexpression of TRPV1 into both muscle and skin of TRPV1(-/-) mice. These results suggest that TRPV1 serves as both a mediator of nociceptor sensitization at the site of inflammation and as a heat sensor at the paw.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号