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Abstract 
● AIM: To explore a segmentation algorithm based on deep 
learning to achieve accurate diagnosis and treatment of 
patients with retinal fluid.
● METHODS: A two-dimensional (2D) fully convolutional 
network for retinal segmentation was employed. In order to 
solve the category imbalance in retinal optical coherence 
tomography (OCT) images, the network parameters and 
loss function based on the 2D fully convolutional network 
were modified. For this network, the correlations of 
corresponding positions among adjacent images in space 
are ignored. Thus, we proposed a three-dimensional (3D) 
fully convolutional network for segmentation in the retinal 
OCT images.
● RESULTS: The algorithm was evaluated according to 
segmentation accuracy, Kappa coefficient, and F1 score. 
For the 3D fully convolutional network proposed in this 
paper, the overall segmentation accuracy rate is 99.56%, 
Kappa coefficient is 98.47%, and F1 score of retinal fluid is 
95.50%. 
● CONCLUSION: The OCT image segmentation algorithm  
based on deep learning is primarily founded on the 2D 

convolutional network. The 3D network architecture  
proposed in this paper reduces the influence of category 
imbalance, realizes end-to-end segmentation of volume 
images, and achieves optimal segmentation results. The 
segmentation maps are practically the same as the manual 
annotations of doctors, and can provide doctors with more 
accurate diagnostic data.
● KEYWORDS: optical coherence tomography images; fluid 
segmentation; 2D fully convolutional network; 3D fully 
convolutional network
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INTRODUCTION

R etinal fluid, including sub-retinal fluid (SRF) and 
intra-retinal fluid (IRF), is a considerably common 

retinal ailment secondary to numerous diseases, which may 
cause severe vision loss. Therefore, a rapid and an accurate 
comprehensive view of retinal fluid may be of considerable 
significance in its diagnosis and treatment. Optical coherence 
tomography (OCT) technology, as a rapidly emerging type of 
medical imaging technology, offers various advantages and 
broad application prospects. It uses light instead of ultrasound 
to generate images. According to the backward ability or 
retroreflection of weakly coherent light, the biological tissue of 
different retina depths produces a cross-sectional image with 
high resolution and gray-light changes[1]. This is beneficial for clearly 
visualizing various retinal layers in order to assess and quantify 
different pathological features of the retina qualitatively.
Presently, intelligent automation in the medical field is mainly 
used for research on the segmentation of magnetic resonance 
images and enhancement of retinal blood vessels. Imaging 
with the OCT is a new technology, and research on retinal 
OCT images is still in its early stage. In the study of retinal 
segmentation, semi-automatic methods were first used. For 
example, Kashani et al[2] employed OCTOR software (Doheny 
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Eye Institute, Los Angeles, USA) for manual labeling; 
by manually clicking on the location of the fluid on each 
slice, Zheng et al[3] obtained the fluid contour according to 
the algorithm. In order to reduce the workload of doctors, 
numerous researchers have also proposed automatic methods, 
such as segmentation methods based on the threshold and 
graph theories. The threshold-based segmentation algorithm 
mainly uses the characteristics of OCT images with evident 
gradient changes. Chen et al[4] used the threshold-based 
segmentation to mark the retinal pigment epithelial (RPE) 
layer and determine the candidate region. However, the 
threshold-based segmentation algorithm requires high image 
quality; hence, it is not considerably adaptable to datasets 
with large quality variance among different images. Chen et 
al[5] proposed the use of the graph search method for fluid 
segmentation. When macular holes and fluid coexist, the 
laboratory first removes the hole position; thereafter, the fluid 
segment is cut using the Adaboost classifier combined with a 
graph[6]. Slokom et al[7] and Fernandez[8] used active contours 
to outline fluid regions. These traditional algorithms involve 
large amounts of mathematical calculations and a continuous 
iterative optimization process. Consequently, these methods 
will consume considerable amounts of time in actual testing 
that is not in line with actual application scenario requirements. 
With the development of deep learning, image features 
are automatically extracted by means of the convolutional 
network. It is observed that its effect is far superior than that of 
traditional algorithms.
In recent years, in the medical imaging field, deep learning 
methods have also been developed and continually applied. 
Long et al[9] first proposed a fully convolutional network (FCN) 
for semantic segmentation, which achieved end-to-end image 
segmentation; it made pioneering progress in the application of 
deep learning in image segmentation. As a result, the algorithm 
quickly gained attention. The FCN has been applied to the 
segmentation of retinal fluid, and the conditional random field 
was used to fine-tune segmentation results[10]. Subsequently, 
Ronneberger et al[11] and Badrinarayanan et al[12] proposed the 
U-Net and SegNet architectures, respectively, based on the 
FCN. The studies[13-16] applied U-Net to the segmentation of 
OCT images. It has also been employed in the segmentation of 
drusen lesions[13], and the effects of different image annotations 
on segmentation results have been compared. Moreover, it is 
reported that U-Net was applied to divide the IRF[14], employed 
to segment the retina layers and fluid[15], and modified the loss 
function. In another study[16], two-stage FCNs were proposed 
based on U-Net. The first FCN was used to extract the retinal 
area, and the second FCN was used for fluid segmentation 
combined with the retinal information extracted in the previous 
stage. Although the retinal segmentation information can 

be used to correct fluid segmentation, the network requires 
separate training at each stage. If retinal segmentation is 
wrong in the first stage because of large image noise, then the 
subsequent impact is extremely serious.
The development of deep networks has greatly improved 
the accuracy of image segmentation. However, based on the 
review of a substantial amount of literature, it was found that 
the networks used in each article differed; nevertheless, the 
reason for the selection of a specific network is not indicated. 
To resolve this problem, the effects of FCN, SegNet, and 
U-Net on retinal fluid segmentation are compared, and the 
appropriate network architecture is determined according to 
the results. In order to solve the category imbalance problem in 
retinal OCT images, the network parameters and loss function 
are modified based on the selected network. Considering that 
the OCT images are volume data, trend change information 
exists among adjacent images, and the two-dimensional (2D) 
fully convolutional network ignores the spatial information. 
Furthermore, if the network is trained in stages, then it is 
more difficult to utilize information. In order to solve this 
problem, the application of three-dimensional (3D) CNN in 
video segmentation[17] is exploited. Therefore, we propose the 
construction of a 3D network structure for flexibly exploring 
the spatial association information to achieve improved 
segmentation results. Our research indicates that this present 
study is the first to utilize the 3D network architecture in the 
segmentation of retinal OCT images.
SUBJECTS AND METHODS
Ethical Approval  The images used in the research were 
provided by Shanghai General Hospital. It was approved by 
the Medical Ethics Committee of Shanghai General Hospital 
Medical Science and was conducted in accordance with the 
tenets of the Declaration of Helsinki. Informed consent was 
obtained from all participants in this study. The labels for the 
experimental training data were annotated by the hospital’s 
professional ophthalmologists.
Description of Project Objectives  The overall process of 
the algorithm research presented in this paper is illustrated in 
Figure 1. It includes two stages: neural network training and 
testing.
The training process is depicted in Figure 1A. The input to the 
network structure is a set of OCT slice images corresponding 
to the retinal fundus image. The green line in this image 
indicates the scanning position of the corresponding OCT 
slice with a total of 19 scanning lines. Howerer, the bright 
green line indicates the position of the current scanning 
line; the corresponding OCT slice is indicated by the blue 
arrow in the figure. The OCT slice images clearly depict the 
hierarchical structure of different retina locations. The output 
of the network structure is a set of manually labeled images. 
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In this study, the label is divided into three categories: the 
background (black region), the tissue layer between the inner 
retina layer (ILM) and retinal pigment epithelial (RPE) layer 
[recorded as the ILM-RPE layer (red region)], and the lesion 
fluid area (white region). The testing process is illustrated in 
Figure 1B. The given set of a patient’s OCT images is inputted 
into the trained network; the network outputs the results 
after classifying each pixel. The fluid volume is calculated 
according to the segmentation result.
Retinal Fluid Segmentation Based on Improved 2D U-Net 
Improved 2D U-Net  After Long et al[9] proposed the FCN, 
the image segmentation problem at the semantic level was 
solved, and an end-to-end pixel-to-pixel image segmentation 
was initially implemented. Since then, researchers have 
proposed various FCN-based network architectures to achieve 
more accurate segmentation effects. U-Net for biomedical 
image segmentation was proposed[11]. In this study, in order to 
solve the category imbalance problem in retinal OCT images, 
an improved U-Net framework is proposed, which is illustrated 
in Figure 2. Each colored block in the figure represents the 

operation performed on the image. The number above the 
colored blocks indicates the number of convolution kernels in 
the current layer, whereas the number on the side indicates the 
size of the current layer output.
Network structure layers  Throughout the development 
of convolutional neural networks, it is evident that most of 
the proposed networks have been based on the modification 
of classic network architectures, such as AlexNet[18], VGG-
Net[19], and GoogLeNet[20]. The VGG-Net architecture proves 
that the convolutional layer of a small convolution kernel 
(with no pooling in the middle) is the same as the receptive 
field of a large convolution kernel; for example, two 3×3 
convolutional layers have the same receptive field as a 
5×5 convolutional layers. Moreover, it makes the decision 
function more discriminative; thus, the number of parameters 
can be significantly reduced. This method lays a theoretical 
foundation for the current network frame convolution kernel-
size setting. Therefore, the basic modules of the three networks 
implemented in this study were constructed using the VGG-
Net framework.

Figure 1 Overall flowchart of algorithm  A: Training phase flowchart; B: Test phase flowchart.

Figure 2 Improved 2D U-Net architecture diagram.

Deep learning used in retinal fluid segmentation
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Furthermore, because the deep neural network training process 
is prone to overfitting, the U-Net convolution block originally 
proposed in only uses the convolution (Conv)+ReLu operation 
and does not consider the overfitting phenomenon[11]. Through 
the continuous innovations introduced by research scholars, it 
has been proposed that the aforementioned problem be solved 
by data augmentation or changing the network structure, 
such as increasing the regular term, dropout layer[21], or batch 
normalization (BN) layer[22]. The BN layer can improve the 
network gradient, considerably improve the training speed, 
and cause the training result to converge rapidly. Moreover, 
the addition of the BN layer can enable the network to reduce 
the use of the dropout layer and regular term as well as 
improve the network generalization ability. Therefore, each 
convolution block presented in this paper uses a combination 
of Conv+BN+ReLu.
Loss function  An experimental comparison demonstrates that 
the weighted loss function can make the seven-layer retinal 
boundary segmentation more accurate and compensate for the 
imbalance between the background and other categories[15]. In 
order to achieve the research objectives of this study, it is not 
necessary to stratify the retina; however, serious imbalances 
exist between the background, ILM-RPE layer, and fluid. 
The background pixels have the greatest influence and major 
contribution to the loss, such as leading the direction of the 
gradient update and masking important information. 
Most pixels are simple and easy to divide; however, the 
characteristic information of pixels that are difficult to classify 
(such as edge pixels) cannot be fully learned. Therefore, the 
easy-to-classify pixels have a major contribution to the loss and 
dominate the gradient update direction. In order to solve this 
problem, the focal loss is proposed by Lin et al[23] that involves 
solving the problem of unbalanced distribution in the target 
detection. Combining the ideas of previous two studies[15,23], 
we propose an improved loss function, which is more suitable 
for network training of data sets in this paper.

Retinal Fluid Segmentation Based on Improved 3D U-Net  
Because the 2D FCNs can only consider the neighborhood 
correlation of the image itself, the correlation of the spatial 
positions among images is ignored, and the OCT images 
consist of volume data with strong correlations among 
adjacent images. In actual cases, when the fluid in a single 
OCT image cannot be accurately determined, it is necessary 
for the ophthalmologist to combine the features of adjacent 
OCT images in order to perform segmentation annotation. 
Therefore, to consider the correlations among adjacent images, 
we propose the use of improved 3D U-Net, which is illustrated 
in Figure 3.
As illustrated in Figure 3, the entire network architecture 
is similar to that depicted in Figure 2, except that the input 
and output are changed from a 2D image to a volume 
image, and all convolution kernels in the network also 
become 3D structures. The numbers in the figure indicate 
the output shape of the current layer. For example, the input 
size is 496×512×19, that is, 19 OCT scans of B-scan size 
496×512. The size 4×496×512×19 indicates that the number 
of convolution kernels is four, and the feature map shape 
following convolution is 496×512×19.
In the experiment, a convolution kernel size of 3×3×3 is 
used in the convolutional layer; this means that the single 
image is internally 3×3 convoluted, and spatial convolution 
is performed directly on three adjacent images. Moreover, 
the zero-padding operation is used. The ReLu activation 
function continues to be used in the hidden layer for nonlinear 
transformation. Finally, for multi-classification probability 
prediction, the softmax function is selected by the output layer 
activation function. Furthermore, in order to reduce overfitting, 
the BN layer is used in each coding or decoding block.
The pooling layer adopts maximum pooling; its convolution 
kernel size is 2×2×1. This means that 2×2 maximum pooling 
is used in the single image, and the pooling operation is not 
performed between adjacent images in the space, which can 
consider additional neighborhood relationships among images.

Figure 3 Improved 3D U-Net architecture.
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RESULTS
Dataset  Dataset size: There were 75 OCT volumes from 42 
patients; each volume has 19 OCT scans of B-scan size 
496×512 (a total of 1425 B-scans). The ratio of training set (%) 
to test set (%) is 70:30. The training set has 53 OCT volumes 
(1007 B-scans) from 31 patients. The test set has 22 OCT 
volumes (418 B-scans) from 20 patients.
Because the training dataset is limited, and fluid distribution is 
not balanced, a data augmentation strategy is applied to expand 
the training dataset for small samples to improve the robustness 
of the network. The following data augmentations are 
randomly applied to small samples for training: 1) Randomly 
rotated between 0 and 15°; 2) Randomly shifted horizontally 
within 20% of the image width; 3) Randomly shifted vertically 
within 20% of the image height; 4) Randomly sheared between 
0 and 0.2 scale; 5) Randomly flipped.
Eventually, the training set was extended to 153 OCT volumes 
(2907 B-scans).
Experimental platform: The experiment was run on a 
workstation with CPU Intel Core i7-7700K@4.20Hz quad-core, 
64-GB memory, 1024-GB disk, and two GPUs Nvidia GeForce 
GTX 1080 (each 8 GB). The experimental environment is the 
Ubuntu system.
Result Evaluation Metrics  The network performance of 
the results of training and test datasets is evaluated. For 
the training dataset, the segmentation effect and network 
convergence are observed according to the accuracy rate of 
the dataset and loss trend during the training process. For the 
test dataset, the segmentation accuracy, F1 score, and Kappa 
coefficient are computed according to the prediction results 
of this dataset in order to analyze the network generalization 
ability. The definitions of each evaluation metric are as follows: 
1) Accuracy: This reflects the network ability to determine 
the entire dataset. The overall accuracy and the accuracy of 
each class are analyzed. 2) F1 score[24]: The harmonic mean 
of precision and recall, also known as the Dice coefficient[25]. 
3) Kappa coefficient[26]: Kappa is a statistic that measures 
inter-rater agreement for qualitative (categorical) items. It is 
generally assumed to be a more robust measure than a simple 
percentage agreement calculation because it considers the 
possibility of the agreement occurring by chance. 
Comparison and Analysis
Comparison results between 2D FCN (FCN8/FCN16), 
SegNet, and U-Net  Figure 4 illustrates the accuracy and 
loss curves for the training dataset of all 2D convolutional 
networks. The abscissa is the number of iterations, which is 
recorded when the entire dataset is trained once. The ordinate 
is the accuracy (or loss). It should be noted that the four 
networks in the figure do not have a BN layer, and the result 
is obtained from the network trained with the cross entropy 

as a loss function. In Figure 4A, it can be observed that the 
U-Net accuracy curve is significantly higher than those of the 
other networks. Moreover, the U-Net loss curve in Figure 4B 
is closest to zero and decreases the fastest; this illustrates that 
it converges most easily. Based on the comparison of training 
results, the U-Net is clearly more suitable for achieving the 
research objective.
In order to prove that U-Net provides superior generalization 
ability, each network is evaluated on the test dataset; Tables 1 
and 2 summarize the test results. The list in Table 1 indicates 
the scores of the evaluation metrics of the overall classes 
of each network on the test dataset. It can be observed that 
the ACCoverall and kappa values between FCN8, FCN16, and 
SegNet exhibit slight differences; U-Net is observed to be 
significantly superior to these other networks. The list in Table 2 
provides the scores of each class of the evaluation metrics 
on the test dataset; U-Net also achieves the best results in all 
metrics in each class. Accordingly, based on the above results, 
U-Net is finally selected.
Comparison Results between Improved 3D U-Net, 
Improved 2D U-Net, and 2D U-Net  Table 3 summarizes the 
scores of the overall evaluation metrics of the three networks 
on the test dataset. According to the list, improved 3D U-Net 
achieves superior results for all metrics; this indicates that 
the proposed 3D U-Net exhibits the highest segmentation 
accuracy. Table 4 lists the evaluation scores of each class of 
the three networks on the test dataset. Because our focus is on 
the retinal fluid, it can be observed in the list that the proposed 
3D U-Net achieves the best performance in all metrics for the 
retinal fluid segmentation (label 2).

Table 1 Results of evaluation metrics of all classes in test set

Metrics FCN8 FCN16 SegNet U-Net
ACCoverall 0.9854 0.9828 0.9856 0.9908
Kappa 0.9507 0.9411 0.9515 0.9692

Table 2 Results of evaluation metrics of each class in test set

Metrics Labelsa FCN8 FCN16 SegNet U-Net

ACC 0 0.9891 0.9863 0.9891 0.9934

1 0.9858 0.9833 0.9858 0.9910

2 0.9959 0.9960 0.9962 0.9973

F1 score 0 0.9934 0.9917 0.9934 0.9960

1 0.9578 0.9492 0.9581 0.9731

2 0.7903 0.8074 0.8135 0.8785
aLabel 0 indicates background, label 1 indicates ILM-RPE layer, and 
label 2 indicates fluid area.

Table 3 Scores of evaluation metrics in test set

Metrics 2D U-Net Improved 2D U-Net Improved 3D U-Net
ACCoverall 0.9908 0.9917 0.9956
Kappa 0.9692 0.9725 0.9847

Deep learning used in retinal fluid segmentation
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In order to understand the segmentation effect intuitively, the 
segmentation results are used as example. Figure 5 displays the 
results of a set of OCT images with the IRF. Figure 5A presents 
19 OCT images, whereas Figure 5B provides manually labeled 
annotations of ophthalmologists. Figure 5C-5E illustrate the 
results of the original 2D U-Net, improved 2D U-Net, and 
improved 3D U-Net, respectively. In the figure, it can be 
observed from the images enclosed in blue that the original 2D 

U-Net and improved 2D U-Net segmentation results contain 
several errors. Although the proposed 3D U-Net misses certain 
small areas, it corrects evident errors; visually, there is no 
significant difference, and the segmentation result is relatively 
accurate.
Figure 6 illustrates the segmentation results of a set of OCT 
images containing the SRF. It can be intuitively observed that 
the overall segmentation results of the proposed 3D U-Net are 

Figure 4 2D FCN training results  A: Training accuracy curve; B: Training loss curve.

Figure 5 Segmentation results of OCT images with IRF  A: 19 
OCT images; B: Manually labelled annotations of ophthalmologists; 
C: Results of original 2D U-Net; D: Results of the improved 2D 
U-Net; E: Results of the improved 3D U-Net.

Figure 6 Segmentation results of OCT images with SRF  A: 19 
OCT images; B: Manually labelled annotations of ophthalmologists; 
C: Results of original 2D U-Net; D: Results of improved 2D U-Net; 
E: Results of improved 3D U-Net.
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practically the same as the manually labeled results. As can be 
observed from the images enclosed in blue, the segmentation 
results of 2D U-Net and improved 2D U-Net are evidently 
misclassified.
Overall Process Framework  In order to provide doctors with 
an improved visual experience, the OCT images of patients are 
integrated into the original fundus map to illustrate the fluid 
contour; accordingly, the doctor can view the fluid shape more 
intuitively. The overall framework of this study based on the 
proposed 3D U-Net above is illustrated in Figure 7.
DISCUSSION
OCT images have high resolutions, and they distinctly display 
retinal tissue layers. When retinal fluid is present, the retina 
shape changes. Accordingly, the analysis of retinal fluid based 
on OCT images has become one of the most popular methods 
for clinical diagnosis. However, the OCT technique acquires 
numerous scanned slice images, and the retinal fluid shape 
and amount are uncertain. Moreover, it is time-consuming 
and cumbersome to analyze these images only by visual 
observation and perform manual segmentation. In order to 
realize intelligent medicine, deep learning algorithms have 
been continuously applied. In relation to this, to facilitate the 
pixel-level segmentation of images, the fully convolutional 
network[9] has been proposed; accordingly, such a network has 
become a potential solution to problems involving medical 
image segmentation[10,13-15].
In this study, the proposed 3D U-Net framework, which is 
found to be superior to other methods of comparison, achieves 
a 99.56% accuracy; the Kappa coefficient and F1 score of 
retinal fluid achieved 98.47% and 95.50%, respectively. 
The segmentation results of our proposed algorithm are 
considerably similar to the annotations of professional doctors. 

All of the foregoing demonstrate that the proposed algorithm 
has accurate segmentation ability; it is an effective and 
significant guide in practical applications.
In this study, although the input images are decentralized, 
they contain substantial amounts of speckle noise. In fact, 
the noise characteristics are considerably different from the 
target features; hence, whether noise improves or reduces 
performance is uncertain. To remove speckle noise, different 
algorithms (such as non-local mean filtering[27] and algorithms 
based on sparsity de-noising[28]) will be tested, and the effect 
of noise on segmentation results through experiments will 
be compared. The current training dataset is relatively small, 
and the types of retinal fluid images are limited. If the images 
contain several complicated diseases, then it is necessary to 
improve the segmentation ability of the network. If significant 
amounts of data can be collected in the future, the impact of 
this problem can be reduced. Different types of retinal fluid 
can be classified such that the network can distinguish the 
type of retinal fluid and calculate the corresponding volume; 
as a result, this will make it possible to provide more detailed 
information to the doctor. As for the problem that the medical 
images are relatively few, adversarial networks may be a 
solution[29]. In the future work, adversarial networks will be 
tested based on the framework proposed in this paper. It is 
anticipated that the segmentation performance of the network 
can be improved even in the case of fewer samples.
The novel method can demonstrate retinal fluid and calculate 
the volume of them, which can help ophthalmologists 
comprehensively grasp the extent of a patient’s macular 
edema. At present, central retinal thickness (CRT) is usually 
used to evaluate the macular anatomy in patients with fluid 
before and after treatment[30]. However, whereas CRT is a 2D 

Figure 7 Overall process structure.

Table 4 Scores of evaluation metrics of each class in test set

Metrics Labelsa 2D U-Net Improved 2D U-Net Improved 3D U-Net
ACC 0 0.9934 0.9938 0.9970

1 0.9910 0.9918 0.9956

2 0.9973 0.9980 0.9986

F1 score 0 0.9960 0.9962 0.9982

1 0.9731 0.9758 0.9860
2 0.8785 0.9109 0.9550

aLabel 0 indicates background, label 1 indicates ILM-RPE layer, and label 2 indicates fluid area.

Deep learning used in retinal fluid segmentation



1019

Int J Ophthalmol,    Vol. 12,    No. 6,  Jun.18,  2019         www.ijo.cn
Tel: 8629-82245172     8629-82210956      Email: ijopress@163.com

index, the volume of fluid is 3D. As a result, although CRT 
is somewhat useful in gauging the extent of retinal fluid, it 
has limited utility in the overall assessment of the resolution 
of fluid. Under these circumstances, OCT images have the 
potential to provide a more comprehensive clinical picture of 
a patient’s macular edema. More specifically, identification 
of the volume of IRF and SRF allows ophthalmologists to 
intuitively and meaningfully analyze the extent of edema and 
its resolution over time[31]. For many patients, it is difficult to 
detect changes in the location and volume of edema without 
objective data. Therefore, we believe it is necessary to use such 
data to gauge the regression of edema, which will contribute to 
the adjustment of follow-up treatment measures.
In this study, a segmentation algorithm framework based on 
3D neural networks is proposed; the framework is aimed at 
resolving the problem of retinal fluid segmentation in retinal 
OCT images. Compared with other methods, the proposed 
3D U-Net network is more aligned with the human working 
mode under real conditions. The network performs fluid 
segmentation by combining the spatial temporal correlations 
among images; thereby, more reasonable results are obtained. 
Moreover, the evaluation coefficients demonstrate that the 
proposed 3D U-Net architecture exhibits superior performance, 
and the fluid segmentation accuracy is higher. It is illustrated 
that the shape, distribution and the volume calculation of the 
retinal fluid can provide doctors with a more intuitive visual 
experience, which is highly significant in monitoring disease 
development and drug efficacy tracking.
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