Abstract: | Intracellular electrophysiological recordings were obtained from a specialized class of "starburst" amacrine cells by using an isolated superperfused retina-eyecup preparation of the rabbit. These cells were injected intracellularly with horseradish peroxidase and identified with light microscopy. A computer-controlled image-processing system was used to map and display the three-dimensional dendritic organization and provide information on length and sublaminar distribution of dendritic processes. Starburst amacrines show an unusual dendritic architecture that includes thin intermediate dendritic segments. Analysis with steady-state cable equations suggests that these thin segments may provide electrical isolation of distal processes, raising the possibility that a single dendrite, which lies beyond the thin segment, may constitute a functional subunit of the cell. |