首页 | 官方网站   微博 | 高级检索  
     


Additive manufactured push‐fit implant fixation with screw‐strength pull out
Authors:Richard J van Arkel  Shaaz Ghouse  Piers E Milner  Jonathan R T Jeffers
Affiliation:Department of Mechanical Engineering, Imperial College London, London, United Kingdom
Abstract:Additive manufacturing offers exciting new possibilities for improving long‐term metallic implant fixation in bone through enabling open porous structures for bony ingrowth. The aim of this research was to investigate how the technology could also improve initial fixation, a precursor to successful long‐term fixation. A new barbed fixation mechanism, relying on flexible struts was proposed and manufactured as a push‐fit peg. The technology was optimized using a synthetic bone model and compared with conventional press‐fit peg controls tested over a range of interference fits. Optimum designs, achieving maximum pull‐out force, were subsequently tested in a cadaveric femoral condyle model. The barbed fixation surface provided more than double the pull‐out force for less than a third of the insertion force compared to the best performing conventional press‐fit peg (p < 0.001). Indeed, it provided screw‐strength pull out from a push‐fit device (1,124 ± 146 N). This step change in implant fixation potential offers new capabilities for low profile, minimally invasive implant design, while providing new options to simplify surgery, allowing for one‐piece push‐fit components with high levels of initial stability. © 2017 The Authors. Journal of Orthopaedic Research® Published by Wiley Periodicals, Inc. on behalf of the Orthopaedic Research Society. J Orthop Res 36:1508–1518, 2018.
Keywords:initial implant stability  press‐fit  minimally invasive implants  porous implants  3D printing
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号