The effects of dexamethasone and chlorpromazine on tumour necrosis factor-alpha, interleukin-1 beta, interleukin-1 receptor antagonist and interleukin-10 in human volunteers. |
| |
Authors: | M W Bleeker M G Netea B J Kullberg J Van der Ven-Jongekrijg J W Van der Meer |
| |
Affiliation: | University Hospital Nijmegen, Department of Medicine, The Netherlands. |
| |
Abstract: | Tumour necrosis factor-alpha (TNF-alpha) and interleukin-1 beta (IL-1 beta) are pro-inflammatory cytokines that play an important role in severe infections, whereas IL-1 receptor antagonist (IL-1ra) and IL-10 are anti-inflammatory cytokines that counteract their effects. Chlorpromazine and dexamethasone protect mice against lethal endotoxaemia by decreasing circulating concentrations of TNF-alpha and IL-1 beta. We investigated whether administration of chlorpromazine or dexamethasone to human volunteers is able to modulate the lipopolysaccharide (LPS)-stimulated cytokine production capacity in whole blood. Blood samples were taken before and several time-points after medication. Circulating cytokine concentrations were low in all samples. LPS-induced TNF-alpha and IL-1 beta production in whole blood was inhibited by dexamethasone treatment, while chlorpromazine had no effect. When peripheral blood mononuclear cells were stimulated in vitro with LPS, the addition of chlorpromazine (1-100 ng/ml) had no modulatory action on TNF-alpha, IL-1 beta, IL-1ra or IL-10 synthesis. The chlorpromazine concentrations measured in circulation of volunteers were eight to 40 times lower than the concentrations shown to be effective in mice. In conclusion, chlorpromazine inhibits TNF-alpha and IL-1 beta production in mice at concentrations that cannot be reached in humans, thus precluding its usage in clinical anti-cytokine strategies. In contrast, dexamethasone is an effective inhibitor of pro-inflammatory cytokine production. |
| |
Keywords: | |
|
|