Abstract: | The capsular polysaccharide of type III group B streptococci contributes substantially to the virulence of this organism. We explored the extent to which capsular polysaccharide influences neutrophil complement receptor interactions by using a poorly encapsulated strain (COH 31r/s), two well-encapsulated strains (M732 and M912), and strains produced from COH 31r/s by transposon mutagenesis that lacked capsule (COH 31-15) or had capsular polysaccharide lacking terminal sialic acid residues (COH 31-21). When tested with normal human serum, each strain had initially high bactericidal indices (85 to 96%). Monoclonal antibody blockade of neutrophil complement receptor 3 (CD11b/CD18) inhibited opsonophagocytosis to a significantly greater extent for the well-encapsulated strain than for the poorly encapsulated, asialo, or unencapsulated mutant strain. The addition of antibody with specificity for capsular polysaccharide reduced the inhibitory effect significantly for the encapsulated but not for the mutant strains. Blockade of neutrophil complement receptor 1 (CD35) effected only low-level inhibition. However, simultaneous blockade of complement receptors 1 and 3 augmented the inhibitory effect. When hypogammaglobulinemic serum was used as an antibody-free complement source, the initial bactericidal index was low (30% +/- 15%) for an encapsulated strain and was not affected for the mutant strains. Blockade of either neutrophil complement receptor 1 or 3 or the combination fully inhibited killing of the encapsulated strain. These results demonstrate that the type III group B streptococcal capsular polysaccharide regulates interactions with neutrophil complement receptors. We conclude that efficient phagocytic killing of encapsulated group streptococci in nonimmune serum requires ligation of complement receptors 1 and 3. |