首页 | 本学科首页   官方微博 | 高级检索  
     

1990—2019年中国高血清低密度脂蛋白胆固醇疾病负担趋势分析与预测
引用本文:袁空军1,' target='_blank'>2,杨媛1,' target='_blank'>2,赵创艺1,' target='_blank'>2,颜丹虹1,' target='_blank'>2,周光清2. 1990—2019年中国高血清低密度脂蛋白胆固醇疾病负担趋势分析与预测[J]. 现代预防医学, 2022, 0(14): 2502-2509. DOI: 10.20043/j.cnki.MPM.202112618
作者姓名:袁空军1  ' target='_blank'>2  杨媛1  ' target='_blank'>2  赵创艺1  ' target='_blank'>2  颜丹虹1  ' target='_blank'>2  周光清2
作者单位:1. 南方医科大学卫生管理学院,广东 广州 510515;2. 南方医科大学南方医院健康管理中心,广东 广州 510515
摘    要:目的 描述和分析1990—2019年中国高血清低密度脂蛋白胆固醇(high LDL cholesterol,高LDL - C)疾病负担状况及变化趋势,并预测未来5年的疾病负担,为中国高LDL - C科学防控提供依据。方法 提取2019年全球疾病负担(GBD 2019)中因高LDL - C造成的死亡数、死亡率及DALYs等疾病负担指标,相关指标均采用GBD 2019全球标准人口进行年龄标准化,采用平均年度变化百分比(AAPC)分析率的变化趋势,并应用R 4.1.0对1990—2016年中国因高LDL - C造成的死亡率和DALYs率建立ARIMA模型和NNAR模型,用2017—2019年的数据来评价两模型的拟合效果,最后用拟合效果最好的模型预测2020—2024年中国高LDL - C死亡率和DALYs率。结果 1990—2019年中国高LDL - C造成的死亡率(AAPC = 3.1%,P<0.05)和DALYs率(AAPC = 2.2%,P<0.05)整体呈波动上升趋势;标化死亡率和DALYs率增长14.21%和0.56%,男女性别比范围分别为1.33~1.67和1.36~1.76,男性高于女性;年龄别疾病负担≥70岁人群远高于15~49岁和50~69岁群体;ARIMA(0,2,0)和NNAR(1,1)模型预测与实际趋势基本一致,前者预测值与实际值相对误差、均方根误差(RMSE)、平均绝对误差(MAE)以及平均绝对百分误差(MAPE)均较小,预测精度更好。 结论 中国高LDL - C造成的疾病负担呈逐渐上升趋势,在2020—2024年将继续上升。男性、高龄人群疾病负担更加沉重,应采取针对性措施进行干预。

关 键 词:高低密度脂蛋白胆固醇  疾病负担  ARIMA  NNAR  趋势分析

Trend analysis and prediction of disease burden of high level serum low-density lipoprotein cholesterol in China from 1990 to 2019
YUAN Kong-jun,YANG Yuan,ZHAO Chuang-yi,YAN Dan-hong,ZHOU Guang-qing. Trend analysis and prediction of disease burden of high level serum low-density lipoprotein cholesterol in China from 1990 to 2019[J]. Modern Preventive Medicine, 2022, 0(14): 2502-2509. DOI: 10.20043/j.cnki.MPM.202112618
Authors:YUAN Kong-jun  YANG Yuan  ZHAO Chuang-yi  YAN Dan-hong  ZHOU Guang-qing
Affiliation:*School of Health Management, Southern Medical University, Guangzhou, Guangdong 510515, China
Abstract:Objective To describe and analyze the disease burden status and change trend of high serum low density lipoprotein cholesterol (high LDL-C) in China from 1990 to 2019 and predict the disease burden in the next five years, to provide basis for scientific prevention and control of high LDL-C in China. Methods The disease burden indicators such as number of deaths, mortality and DALYs due to high LDL-C in Global Burden of Disease 2019 (GBD 2019) were extracted and standardized by age using GBD 2019 global standard population. The trend of rate change was analyzed using average annual percentage change (AAPC), and R 4.1.0 was applied to analyze the burden of disease due to high LDL-C from 1990 to 2016 mortality rates and DALYs rates due to high LDL-C in China to build ARIMA models and NNAR models. Data from 2017 to 2019 were used to evaluate the fitting effect of the two models. Finally the best-fitting model was used to predict the rates of high LDL-C mortality and DALYs in China from 2020 to 2024. Results Mortality (AAPC=3.1%, P<0.05) and DALYs rates (AAPC=2.2%, P<0.05) due to high LDL-C in China from 1990 to 2019 showed an overall fluctuating upward trend. The standardized mortality and DALYs rates increased by 14.21% and 0.56%, and the male to female sex ratios ranged from 1.33 to 1.67 and 1.36 to 1.76, respectively, with males higher than females. The age-specific disease burden was much higher in the group aged ≥70 years than in the groups aged 15 to 49 years and 50 to 69 years. The ARIMA (0, 2, 0) and NNAR (1, 1) model predictions were generally consistent with the actual trends. The predicted values by the former model had smaller relative errors, root mean square errors (RMSE), mean absolute errors (MAE) and mean absolute percentage error (MAPE), with better prediction accuracy. Conclusion The disease burden caused by high LDL-C in China is gradually increasing and will continue to rise between 2020 to 2024. The disease burden is heavier in men and the elderly, and targeted measures should be taken to intervene.
Keywords:High level low-density lipoprotein cholesterol  Disease burden  ARIMA  NNAR
点击此处可从《现代预防医学》浏览原始摘要信息
点击此处可从《现代预防医学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号