首页 | 本学科首页   官方微博 | 高级检索  
     


ATP-driven sodium pump in Streptococcus faecalis.
Authors:D L Heefner and F M Harold
Abstract:
Sodium extrusion by bacteria is generally attributed to secondary antiport of Na+ for H+ energized by the proton circulation. Streptococcus faecalis is an exception, in that sodium expulsion from intact cells requires the generation of ATP but does not depend on the protonmotive force. Unfortunately, studies with everted membrane vesicles failed to reveal the expected sodium pump; instead, the vesicles contained a conventional secondary Na+/H+ antiporter. We report here that everted membrane vesicles prepared in the presence of protease inhibitors retain an ATP-driven sodium transport system. The evidence includes the findings that (i) accumulation of 22Na+ by these vesicles is resistant to reagents that dissipate the protonmotive force but requires ATP and (ii) the vesicles contain a sodium-stimulated ATPase that is distinct from F1F0 ATPase, and whose presence is correlated with sodium transport activity. Sodium movements appear to be electroneutral and are accompanied by movement of H+ in the opposite direction. When membranes are incubated in the absence of protease inhibitors, a secondary Na+/H+ antiport activity emerges, possibly by degradation of the sodium pump. We suggest that S. faecalis expels Na+ by means of an ATP-driven primary transport system that mediates exchange of Na+ for H+. The Na+/H+ antiporter seen in earlier membrane preparation is an artefact of proteolytic degradation.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号