首页 | 本学科首页   官方微博 | 高级检索  
     


Lipooligosaccharides containing phosphorylcholine delay pulmonary clearance of nontypeable Haemophilus influenzae
Authors:Pang Bing  Winn Dana  Johnson Ryan  Hong Wenzhou  West-Barnette Shayla  Kock Nancy  Swords W Edward
Affiliation:Department of Microbiology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA.
Abstract:Nontypeable Haemophilus influenzae (NTHi) causes pulmonary infections in patients with chronic obstructive pulmonary disease and other mucociliary clearance defects. Like many bacteria inhabiting mucosal surfaces, NTHi produces lipooligosaccharide (LOS) endotoxins that lack the O side chain. Persistent NTHi populations express a discrete subset of LOS glycoforms, including those containing phosphorylcholine (PCho). In this study, we compared two NTHi strains with isogenic mutants lacking PCho for clearance from mice following pulmonary infection. Consistent with data from other model systems, populations of the strains NTHi 2019 and NTHi 86-028NP recovered from mouse lung contained an increased proportion of PCho+ variants compared to that in the inocula. PCho- mutants were more rapidly cleared. Serial passage of NTHi increased both PCho content and bacterial resistance to clearance, and no such increases were observed for PCho- mutants. Increased PCho content was also observed in NTHi populations within non-endotoxin-responsive C3H/HeJ and Toll-like receptor 4 null (TLR4-/-) mice, albeit at later times postinfection. Changes in bacterial subpopulations and clearance were unaffected in TLR2-/- mice compared to the subpopulations in and clearance from mice of the parental strain. The clearance of PCho- mutants occurred at earlier time points in both strain backgrounds and in all types of mice. Comparison of bacterial populations in lung tissue cryosections by immunofluorescent staining showed sparse bacteria within the air spaces of C57BL/6 mice and large bacterial aggregates within the lungs of MyD88-/- mice. These results indicate that PCho promotes bacterial resistance to pulmonary clearance early in infection in a manner that is at least partially independent of the TLR4 pathway.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号