首页 | 本学科首页   官方微博 | 高级检索  
     

Adaptive Elastic Net结合加速失效时间模型在亚组识别中的应用
引用本文:康佩,许军,黄福强,刘颖欣,安胜利. Adaptive Elastic Net结合加速失效时间模型在亚组识别中的应用[J]. 南方医科大学学报, 2019, 39(10): 1200. DOI: 10.12122/j.issn.1673-4254.2019.10.11
作者姓名:康佩  许军  黄福强  刘颖欣  安胜利
作者单位:南方医科大学 公共卫生学院生物统计学系,广东 广州,510515;南方医科大学 南方医院卫生经济管理科,广东 广州,510515
基金项目:国家自然科学基金;大学生创新创业训练计划项目
摘    要:
目的针对临床试验中的生存数据,基于加速失效时间模型提出一种亚组识别方法。方法将Adaptive Elastic Net应用于加速失效时间模型(称为惩罚模型),通过检验协变量与治疗组别的交互项来识别亚组相关协变量。采用基于极大似然的change-point算法寻找预测计分的截断点以对患者进行亚组分类。采用二阶段适应性设计,以评价治疗效果是否存在于所识别的获益亚组人群中。对比四种模型(含协变量主效应的惩罚模型、单变量模型,以及不含协变量主效应的惩罚模型、单变量模型)的亚组识别效果。结果模拟结果显示,在样本量较小、删失率较高、获益亚组占比较小以及样本量不超过协变量个数的情况下,含协变量主效应的惩罚模型在获益亚组的识别上有明显的优势;而其他情况下,则是不含主效应的单变量模型较优。在二阶段适应性设计中,这两种模型进行亚组识别的Ⅰ类错误均控制在0.05左右;当潜在获益亚组时,相比于传统设计,适应性设计很大程度上提高了检验效能。结论含协变量主效应的惩罚模型适用于生存数据的亚组识别;相比于传统设计,二阶段适应性设计更适用于潜在获益亚组的疗效评价。

关 键 词:加速失效时间模型  适应性设计  change-point算法  精准医疗  Adaptive Elastic Net

Subgroup identification based on an accelerated failure time model combined withadaptive elastic net
Abstract:
Objective We propose a strategy for identifying subgroups with the treatment effect from the survival data of arandomized clinical trial based on accelerated failure time (AFT) model. Methods We applied adaptive elastic net to the AFTmodel (designated as the penalized model) and identified the candidate covariates based on covariate-treatment interactions.To classify the patient subgroups, we utilized a likelihood-based change-point algorithm to determine the threshold cutoffpoint. A two-stage adaptive design was adopted to verify if the treatment effect existed within the identified subgroups.Results The penalized model with the main effect of the covariates considerably outperformed the univariate model withoutthe main effect for the trial data with a small sample size, a high censoring rate, a small subgroup size, or a sample size thatdid not exceed the number of covariates; in other scenarios, the latter model showed better performances. Compared with thetraditional design, the adaptive design improved the power for detecting the treatment effect where subgroup effect existswith a well-controlled type I error. Conclusion The penalized AFT model with the main effect of the covariates has advantagesin subgroup identification from the survival data of clinical trials. Compared with the traditional design, the two-stageadaptive design has better performance in evaluation of the treatment effect when a subgroup effect exists.
Keywords:
本文献已被 万方数据 等数据库收录!
点击此处可从《南方医科大学学报》浏览原始摘要信息
点击此处可从《南方医科大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号