Environmental Modulation of Oral Treponeme Virulence in a Murine Model |
| |
Authors: | Lakshmyya Kesavalu Stanley C. Holt Jeffrey L. Ebersole |
| |
Affiliation: | Departments of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78284-7894, USA. |
| |
Abstract: | This investigation examined the effects of environmental alteration on the virulence of the oral treponemes Treponema denticola and Treponema pectinovorum. The environmental effects were assessed by using a model of localized inflammatory abscesses in mice. In vitro growth of T. denticola and T. pectinovorum as a function of modification of the cysteine concentration significantly enhanced abscess formation and size. In contrast, growth of T. denticola or T. pectinovorum under iron-limiting conditions (e.g., dipyridyl chelation) had no effect on abscess induction in comparison to that when the strains were grown under normal iron conditions. In vivo modulation of the microenvironment at the focus of infection with Cytodex beads demonstrated that increasing the local inflammation had no effect on lesion induction or size. In vivo studies involved the determination of the effects of increased systemic iron availability (e.g., iron dextran or phenylhydrazine) on the induction, kinetics, and size of lesions. T. denticola induced significantly larger lesions in mice with iron pretreatment and demonstrated systemic manifestations of the infectious challenge and an accompanying spreading lesion with phenylhydrazine pretreatment (e.g., increases in circulating free hemoglobin). In contrast, T. pectinovorum virulence was minimally affected by this in vivo treatment to increase iron availability. T. denticola virulence, as evaluated by lesion size, was increased additively by in vivo iron availability, and cysteine modified growth of the microorganism. Additionally, galactosamine sensitized mice to a lethal outcome following infection with both T. denticola and T. pectinovorum, suggesting an endotoxin-like activity in these treponemes. These findings demonstrated the ability to modify the virulence capacity of T. denticola and T. pectinovorum by environmental conditions which can be evaluated by using in vivo murine models. |
| |
Keywords: | |
|
|