首页 | 本学科首页   官方微博 | 高级检索  
     


Inhibition of HIV-1-mediated syncytium formation and virus replication by the lipophosphoglycan from Leishmania donovani is due to an effect on early events in the virus life cycle
Authors:Genois N  Barbeau B  Olivier M  Tremblay M J
Affiliation:Centre de Recherche en Infectiologie, Centre Hospitalier Universitaire de Québec, Pavillon CHUL, Canada.
Abstract:
Previous findings have indicated that the major surface molecule of Leishmania, lipophosphoglycan (LPG), could abrogate HIV-1-induced syncytium formation and virus replication. In the present work, we were interested in characterizing this inhibitory process. Data from a new luciferase-based semiquantitative assay for syncytium formation, relying on the coincubation of a T-cell line containing an HIV-1 LTR-driven luciferase construct with a cell line chronically infected with HIV-1, confirmed that LPG was indeed a strong inhibitor of HIV-1-dependent syncytium formation and that this inhibition was dose-dependent. As determined by flow cytometric analyses, this inhibition was not apparently due to downregulation of CD4, CXCR4 or LFA-1, three distinct surface glycoproteins known to be important in HIV-1 mediated syncytium formation. Furthermore, LPG did not seem to affect signal transduction pathways in T cells as judged by measurement of HIV-1 LTR-driven reporter gene activity upon treatment with different stimuli. However, pretreatment of either of the cell lines used in the assay with LPG led to a significant decrease of virus-mediated syncytium formation, which was further accentuated when both cell lines were pretreated. LPG inhibition of HIV-1 replication was next assessed. When measuring either infection with luciferase-encoding recombinant HIV-1 particles or multinucleated giant cell formation following an acute virus infection, we again observed that LPG was efficient at blocking HIV-1 replication. Specific assays probing different steps of viral entry demonstrated that attachment was not hindered by LPG but that viral entry was modulated, suggesting that LPG targets a postbinding step. Hence, incorporation of LPG into a target cell membrane could influence its fluidity and diminish both the virus-cell and cell-to-cell fusion processes initiated by HIV-1.
Keywords:HIV‐1  syncytium formation  viral entry  lipophosphoglycan
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号