首页 | 本学科首页   官方微博 | 高级检索  
     


Fluorofenidone inhibits UV‐A induced senescence in human dermal fibroblasts via the mammalian target of rapamycin‐dependent SIRT1 pathway
Authors:Dan Lei  Yingxue Huang  Hongfu Xie  Yuxin Yi  Juan Long  Shangqing Lin  Chuchu Huang  Dan Jian  Ji Li
Affiliation:1. Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China;2. Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
Abstract:The aim of this study was to investigate the protective effect of fluorofenidone (5‐methyl‐1‐[3‐fluorophenyl]‐2‐[1H]‐pyridone, AKF‐PD) on ultraviolet (UV)‐A‐induced senescence in human dermal fibroblasts (HDF) and examine the mechanisms involved. HDF were treated with AKF‐PD. Senescence‐associated (SA)‐β‐galactosidase level, cell viability and expression of p16 were evaluated. In addition, UV‐A‐irradiated HDF were treated with AKF‐PD, rapamycin and MHY1485; SA‐β‐galactosidase staining, 3‐(4 5‐dimethylthiazol‐2‐yl)‐2 5‐diphenyltetrazolium bromide assay and western blot for SIRT1 were performed; and phosphorylated mammalian target of rapamycin (p‐mTOR) expression and reactive oxygen species (ROS) levels were measured. Intracellular ROS was detected by the 2′,7′‐dichlorofluroescein diacetate probe. Our results showed that AKF‐PD substantially attenuated the changes of p16 expression, SA‐β‐galactosidase staining and cellular proliferation induced by UV‐A irradiation in HDF. AKF‐PD rescued the increased mTOR phosphorylation and reduced SIRT1 expression induced by UV‐A irradiation in HDF. AKF‐PD and rapamycin together had a synergistic effect on p‐mTOR reduction and SIRT1 increase. mTOR activator MHY1485 partly blocked the above effects. Moreover, intracellular ROS level induced by UV‐A irradiation could partly decrease by AKF‐PD, and MHY1485 could reduce this effect. Our results indicated that AKF‐PD could alleviate HDF senescence induced by UV‐A‐irradiation by inhibiting the p‐mTOR and increasing SIRT1. Moreover, AKF‐PD may be a potential treatment material for skin.
Keywords:fluorofenidone  human dermal fibroblasts  mammalian target of rapamycin  SIRT1  skin photoaging
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号