首页 | 本学科首页   官方微博 | 高级检索  
     

基于Adaptive Elastic Net与加速失效时间模型的亚组识别方法的应用拓展
引用本文:韦红霞,康 佩,刘颖欣,黄福强,陈 征,安胜利. 基于Adaptive Elastic Net与加速失效时间模型的亚组识别方法的应用拓展[J]. 南方医科大学学报, 2021, 41(3): 391-398. DOI: 10.12122/j.issn.1673-4254.2021.03.11
作者姓名:韦红霞  康 佩  刘颖欣  黄福强  陈 征  安胜利
作者单位:南方医科大学公共卫生学院生物统计学系,广东 广州 510515
基金项目:国家自然科学基金;南方医科大学科研启蒙项目
摘    要:
目的 针对适应性设计下的Adaptive Elastic Net与加速失效时间模型亚组识别方法进行更多适用条件下的研究,以获得该方法最佳应用效果所对应的参数。方法 基于前期所提出的亚组识别方法,进一步探讨协变量间相关性、二阶段显著性水准([α1]和[α2])、协变量与样本量比例对该方法的影响。通过模拟研究,探讨含/不含协变量主效应的惩罚模型在不同情形下的亚组识别效果。结果 协变量间的相关性r=0、0.3、0.5时,检验效能(power)表现稳定;在二阶段自适应设计中,当[α1]和[α2]分别为0.035和0.015时,模型的power最高;固定样本量n的情况下,power随着待选协变量个数与n比例的上升而下降,比例升到1之后power呈现平稳趋势;对于不同生存时间的参数分布,单变量模型表现出不同的模式,而惩罚AFT模型相对稳定。结论 协变量间的相关性不影响检验power;(0.035,0.015)可作为自适应设计显著性水准的参考设置;获益亚组与非获益亚组间的治疗效果差异较小时,含协变量主效应的惩罚性AFT模型(Penalized,Eq_in)优于不含协变量主效应的单变量AFT模型(Univariate,Eq_ex);当协变量数量与样本量的比值小于1时,“Univariate,Eq_ex”的power更高;否则,“Penalized,Eq_in”的效果会更好;生存数据的参数分布对单变量模型的影响较大,但对惩罚模型的影响较小。

关 键 词:加速失效时间模型  adaptive elastic net  适应性设计  生存数据  亚组识别

Subgroup identification based on accelerated failure time model combined with adaptive elastic net
,#x097e6; ,#x07ea2;,#x0971e;,,#x05eb7; ,#x04f69;,,#x05218; ,#x09896;,#x06b23;,,#x09ec4; ,#x0798f;,#x05f3a;,,#x09648; ,#x05f81;,,#x05b89; ,#x080dc;,#x05229;. Subgroup identification based on accelerated failure time model combined with adaptive elastic net[J]. Journal of Southern Medical University, 2021, 41(3): 391-398. DOI: 10.12122/j.issn.1673-4254.2021.03.11
Authors:      ,康    ,刘      ,黄      ,陈    ,安      
Affiliation:. 南方医科大学公共卫生学院生物统计学系,广东 广州 510515, Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou 510515, China
Abstract:
Objective To solve the problem of identifying subgroup in a randomized clinical trial with respect to survival time, we present a strategy based on accelerated failure time model to identify the subgroup with an enhanced treatment effect. Methods We fitted and compared univariate accelerated failure time (AFT) models and penalized AFT models regularized by adaptive elastic net to identify the candidate covariates. Based on these covariates, we utilized change-point algorithm to classify the patient subgroups. A two-stage adaptive design was adopted to verify the treatment effect in certain subgroups. Simulations were conducted across different scenarios to evaluate the performance of the models. Results As the correlation between covariates differed, the power of the models with an adaptive design was stable. In the two-stage adaptive design, the power of the models was the highest when the two significance levels (α1 and α2) were allocated to be 0.035 and 0.015, respectively. A better effect of the responder subgroup was associated with a higher power of the models. For a fixed sample size, the power decreased as the covariate number to sample size ratio increased, but the power showed a stable trend when the ratio was above 1. The univariate models showed different distribution patterns of the parameters for different survival time, while their distribution was relatively stable in the penalized AFT models. Conclusion The correlation between the covariates does not affect the performance of univariate AFT models and penalized AFT models. (0.035, 0.015) can be used as a reference for the significance level of an adaptive design. For small differences in the treatment effect between the responder and the non-responder, the penalized AFT model including the main effect of covariate (Penalized, Eq_in) outperforms the univariate AFT model excluding the main effect of covariate (Univariate, Eq_ex). Univariate, Eq_ex performs better when the covariate number to sample size ratio is less than 1, but is outperformed by Penalized, Eq_in when the ratio is above 1. The parameter distribution of survival time has a greater impact on the univariate models but a smaller impact on the penalized models.
Keywords:accelerated failure time model   adaptive elastic net   adaptive design   survival data   subgroup identification,
本文献已被 万方数据 等数据库收录!
点击此处可从《南方医科大学学报》浏览原始摘要信息
点击此处可从《南方医科大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号