Reversible and irreversible labeling and autoradiographic localization of the cerebral histamine H2 receptor using [125I]iodinated probes. |
| |
Authors: | M Ruat E Traiffort M L Bouthenet J C Schwartz J Hirschfeld A Buschauer W Schunack |
| |
Affiliation: | Unité de Neurobiologie et Pharmacologie (U. 109), l'Institut National de la Santé et de la Recherche, Paris, France. |
| |
Abstract: | Iodoaminopotentidine (I-APT)--i.e., N-[2-(4-amino-3-iodobenzamido)ethyl]-N'-cyano-N'-(3-[3- (1-piperidinylmethyl)phenoxy]propyl)guanidine--represents one of the most potent H2-receptor antagonists known so far. In membranes of guinea pig brain 125I-APT bound reversibly, selectively, and with high affinity (Kd = 0.3 nM) to a homogeneous population of sites unambiguously identified as H2 receptors by inhibition studies conducted with a large panel of antagonists. 125I-APT binding was also inhibited by histamine, and the effect was modulated by a guanyl nucleotide, which is consistent with the association of the H2 receptor with a guanine nucleotide binding regulatory protein. The low nonspecific binding of 125I-APT generated high contrast autoradiographic pictures in brain sections and established the precise distribution of H2 receptors. Their highly heterogeneous distribution and laminated pattern in some areas--e.g., cerebral and hippocampal cortices--suggest their major association with neuronal elements. These localizations were more consistent than those of H1 receptors with the distribution of histaminergic projections, indicating that H2 receptors mediate a larger number of postsynaptic actions of histamine--e.g., in striatum. Colocalizations of H1 and H2 receptors in some areas account for their known synergistic interactions in cAMP formation induced by histamine. The distribution of 125I-APT binding sites did not strictly parallel that of the H2-receptor-linked adenylate cyclase activity, which may reflect heterogeneity among H2 receptors. After UV irradiation and SDS/PAGE analysis, [125I]iodoazidopotentidine (125I-AZPT), a photoaffinity probe derived from 125I-APT, was covalently incorporated in several peptides, among which the labeling of two peptides of 59 and 32 kDa was prevented by H2 antagonists, suggesting that they correspond to H2-receptor binding peptides or proteolysis products of the latter. These probes should be useful for sensitive radioassays, localization, purification, and molecular studies of the H2 receptor, which were previously impracticable. |
| |
Keywords: | |
|
|