首页 | 本学科首页   官方微博 | 高级检索  
     


Neurotransmitter release is blocked intracellularly by botulinum neurotoxin, and this requires uptake of both toxin polypeptides by a process mediated by the larger chain.
Authors:B Poulain   L Tauc   E A Maisey   J D Wadsworth   P M Mohan     J O Dolly
Affiliation:Laboratoire de Neurobiologie Cellulaire et Moléculaire, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France.
Abstract:
Botulinum neurotoxins (types A and B), which are microbial proteins consisting of two disulfide-linked chains, inhibit specifically and with high potency the release of acetylcholine from peripheral nerve terminals. As a prerequisite for a long-term development of effective treatments for botulism, the internalization and inhibitory action of the toxin and its constituent chains were examined by electrophysiological methods at identified synapses in Aplysia preparations that allow both intracellular and bath application of the neurotoxins. Intracellular recordings from cholinergic cells of the buccal ganglion demonstrated that extra- or intracellular application of low doses of botulinum neurotoxin results in a specific blockade of evoked transmitter release, without changing the quantal size; an intraneuronal site of action has thus been established. In contrast, release from noncholinergic neurons of cerebral ganglion was prevented by the neurotoxin only after injection into the cell. Purified preparations of the individual renatured chains, shown to be nontoxic in a mouse bioassay, failed to affect acetylcholine release when applied extra- or intracellularly. However, inhibition of release was observed after intracellular administration of both chains or when the light chain was injected and the heavy chain was bath-applied. These findings show that both chains are required on the cytosolic side of the neuronal plasma membrane for expression of toxicity and that the cholinergic specificity of the neurotoxin is attributable to its heavy chain, which mediates targeting and subsequent neuronal uptake.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号