首页 | 本学科首页   官方微博 | 高级检索  
     


Enhanced GABAergic inhibition preserves hippocampal structure and function in a model of epilepsy.
Authors:A M Ylinen, R Miettinen, A Pitk  nen, A I Gulyas, T F Freund,   P J Riekkinen
Affiliation:Department of Neurology, University of Kuopio, Finland.
Abstract:
Extensive electrical stimulation of the perforant pathway input to the hippocampus results in a characteristic pattern of neuronal death, which is accompanied by an impairment of cognitive functions similar to that seen in human temporal lobe epilepsy. The excitotoxic hypothesis of epileptic cell death [Olney, J. W. (1978) in Kainic Acid as a Tool in Neurobiology, eds. McGeer, E., Olney, J. W. & McGeer, P. (Raven, New York), pp. 95-121; Olney, J. W. (1983) in Excitotoxins, eds. Fuxe, K., Roberts, P. J. & Schwartch, R. (Wenner-Gren International Symposium Series, Macmillan, London), Vol. 39, pp. 82-96; and Rothman, S. M. & Olney, J. W. (1986) Ann. Neurol. 19, 105-111] predicts an imbalance between excitation and inhibition, which occurs probably as a result of hyperactivity in afferent pathways or impaired inhibition. In the present study, we investigated whether the enhancement of gamma-aminobutyric acid (GABA)-mediated (GABAergic) inhibition of neurotransmission by blocking the GABA-metabolizing enzyme, GABA transaminase, could influence the histopathological and/or the behavioral outcome in this epilepsy model. We demonstrate that the loss of pyramidal cells and hilar somatostatin-containing neurons can be abolished by enhancing the level of synaptically released GABA, and that the preservation of hippocampal structure is accompanied by a significant sparing of spatial memory as compared with placebo-treated controls. These results suggest that enhanced GABAergic inhibition can effectively block the pathophysiological processes that lead to excitotoxic cell death and, as a result, protect the brain from seizure-induced cognitive impairment.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号