Abstract: | Complement coating and hemolysis were observed when erythrocytes from patients with paroxysmal nocturnal hemoglobinuria (PNH) were incubated in isotonic sucrose solution in the presence of small amounts of serum. Normal cells were likewise coated with complement components but did not hemolyze. Both normal and PNH erythrocytes reduced the hemolytic complement activity of the serum used in this reaction.Experience with other simple saccharides and related compounds suggests that the low ionic strength of the sucrose solution is the feature that permitted complement coating of red cells and hemolysis of PNH erythrocytes. Isotonic solutions of other sugars or sugar alcohols that do not readily enter human erythrocytes could be substituted for sucrose.The mechanism for these reactions may possibly relate to the agglutination observed with erythrocytes tested in the serum-sucrose system. Even though PNH hemolytic activity could be removed by prior heating of serum or barium sulfate treatment of plasma, the agglutination phenomenon still persisted.The in vitro conditions necessary for optimal sucrose hemolysis of PNH erythrocytes were described and compared with those of the classical acid hemolysis test. The requirement for less serum in the sucrose hemolysis system than needed in the standard acid hemolysis reaction makes certain experiments, especially those using large amounts of autologous PNH serum, much more feasible. Additional advantages of the sucrose hemolysis test are that it can be carried out at room temperature in the presence of oxalate and citrate and that critical pH control is not essential. To date, the sucrose hemolysis test has been a sensitive and specific one for PNH. A modified test used for screening purposes, the "sugar water" test, is very easy to perform. |